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Détecter des 
signaux émergents

Motivations – détection & identification de signaux dans données continues

Non-volcanic tremor in Japan, Poiata et al. (2016)

Greenland landslide, Poli (2017)

Mettre en évidence des nouvelles classes de signaux sismiques

Constructing a HMM based earthquake detector 603

Figure 1. Classification results for 9 hr continuous recordings during an active period of the volcano Mt. Merapi. Colour codes correspond to Hybrids in
magenta, block and ash flows in green, rockfall in blue, many phases events in red and Volcanic-Tectonic type B events in yellow and noise/without colouring.
See Section 4.2 for a short description of the different classes.

or magenta earthquakes. This observation led to the idea to apply
HMMs to detect induced seismicity.

However, when adopting HMMs from speech recognition to seis-
mology several pitfalls need to be avoided. Especially incorporating
the time dependent structure of the seismograms accurately in the
model itself plays an important role as shown by Beyreuther &
Wassermann (2011) who introduced Hidden Semi-Markov Models
(HSMMs) to better model this time dependence. Unfortunately the
detection and classification process using HSMM is extremely slow
(1/2 hr CPU time for 1 hr data). As a way out of this dilemma, we ap-
proximate the time dependence of the HSMM with the faster HMM
detection (40 s CPU Time for 1 hr data) by using state clustering.
This approach allows also to introduce minimum duration length
similar to the HSMM (Beyreuther & Wassermann 2011).

As a first step, we explain the meaning of the HMM parameters
in the context of earthquake classification. In the remainder of the
paper we concentrate on adapting the speech recognition models
(HMMs) to seismology. In this step we introduce state clustering
to model the time dependency of the HMM more adequately. The
proposed HMMs are applied to continuous seismic monitoring data
of a geothermal power-plant and the results are compared to those of
a recursive STA/LTA trigger with coincidence sums over multiple
stations. Hereinafter coincidence sums simply mean that a detection
is only made, if the event was triggered for multiple stations in the
same time span. To show the general applicability of both state
clustering and the proposed adaptation steps, we show also the
results of the application to the Mt. Merapi volcano 1998 data set.

2 F RO M G AU S S I A N C L A S S I F I E R S T O
H I D D E N M A R KOV M O D E L S

The whole classification process consists of two steps. First, the
HMM has to be set up through the analysis of preselected train-
ing data. This involves calculating a set of characteristic functions,
transforming them to an orthonormal basis system and estimating
Gaussian probability distributions and transition probabilities on the
set of training observations. Then in the second step, these distribu-
tions and transition probabilities are used to estimate the best fitting
event class in a sliding window on the continuous data that are to be
analysed. To build a detector we simply recast the detection prob-
lem into a classification problem with two classes, noise for noise
and induced for induced seismicity. In this section, we describe the
meaning of the model parameters using a seismological example.

The seismic signal is not represented by the waveform itself but
by a set of characteristic functions, which better discriminate the

Figure 2. Schema of the feature generation. The top seismogram is trans-
formed in a sliding window to for example, 15 characteristic functions. The
values of those characteristic functions (gray dots) are then transformed
via the principal component analysis (PCA) and inversely weighted by the
square root of the corresponding singular value. This methodology assures
a linear independence and an unit variance of the resulting 15-dim feature
vector o (represented by the bottom gray dots).

different classes. Many common triggering routines apply a similar
approach, for example, the STA/LTA is working with simple trig-
gering thresholds on one characteristic function computed from the
waveform. Here we use for example, the characteristic functions
‘envelope’ and ‘instantaneous frequency’ (calculated in a running
window) to discriminate the signal based on the coarse scale and
on the small scale at the same time (for more details on character-
istic functions and their selection process, see the studies on dis-
crete HMM by Ohrnberger 2001; Beyreuther & Wassermann 2008).
These characteristic functions are zero meaned and transformed to
their principal axis. The mean and the transformation operator are
pre-calculated from a principal component analysis of the training
data. The resulting values are then inversely weighted by the square
root of the associated singular value, yielding a multidimensional or-
thonormal time-series which is called features in this paper (Fig. 2).
This whole procedure is also called pre-whitening, see Deller et al.
(1993, p. 62) or Ohrnberger (2001, pp. 23–26). The transformation
and subsequent normalization ensures the linear independence and
unit variance of the resulting features.

The features used in this study are shown in Fig. 3, where each
feature is represented by one diagram. Each event in the training
data set corresponds to one line in the various diagrams. The noise
training samples are plotted in gray, the induced events in red.
The vertical bars correspond to the estimated model parameters
which we cover in more detail at the end of this section. Due to the
transparency of the lines a crossing of multiple lines will result in a
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Identifier automatiquement de 
grandes bases de données

clusters in continuous data, Beyreuther (2012)
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Identification de familles – méthode supervisée et non-supervisée
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C’est une tâche d’exploration, tout résultat a du sens

Aldenderfer & Bashfield (1984), Duda & Hart (1973), Estivill-Castro (2002)

Identification de familles – un grand nombre de définitions, autant de solutions
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source: scikit-learn.org

http://scikit-learn.org


Cas particulier – identification de familles de formes d’onde

modifié de Goodfellow 
et al. (2016)
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Concept des réseaux de neurones convolutifs 

Figure 2.1: (No padding, unit strides) Convolving a 3 ⇥ 3 kernel over a 4 ⇥ 4
input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).

Figure 2.2: (Arbitrary padding, unit strides) Convolving a 4⇥ 4 kernel over a
5 ⇥ 5 input padded with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5,
k = 4, s = 1 and p = 2).

Figure 2.3: (Half padding, unit strides) Convolving a 3⇥ 3 kernel over a 5⇥ 5
input using half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1).

Figure 2.4: (Full padding, unit strides) Convolving a 3⇥ 3 kernel over a 5⇥ 5
input using full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2).
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Exemple d’un grand champion de la classification d’images

Simonyan & Zisserman (2015)

Cette architecture est le fruit d’essais 
empiriques inspirés par la nature

Deep convolutional VGG16

Du détail à l’abstrait

6
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Exemples de filtres appris (première couche)

Les filtres de VGG16 sont sensibles à l’orientation
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Exemples de filtres appris (première couche)
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Ondelettes de Gabor en 2D

Les filtres de VGG16 sont sensibles à l’orientation

On peut les remplacer par des ondelettes



Réseau de neurones convolutif à ondelettes
TRANSACTIONS ON SIGNAL PROCESSING 6
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Fig. 4. A scattering transform iterates on wavelet modulus operators |Wm| to compute cascades of m wavelet convolutions and moduli stored in Umx, and
to output averaged scattering coefficients Smx.

prove that there exists a constant C such that for all x and
any such ⌧ [11]:

kSx⌧ � Sxk  C sup
t

|⌧ 0(t)| kxk , (24)

up to second-order terms. As explained for mel-spectral de-
compositions, the constant C is inversely proportional to the
octave bandwidth of wavelet filters. Over multiple scattering
layers, we get C = C0(maxm Qm). For Morlet wavelets,
numerical experiments on many examples give C0 ⇡ 2.

B. Contraction and Energy Conservation
We show that a scattering transform is contractive and can

preserve energy. We denote kAxk2 the squared Euclidean
norm of a vector of coefficients Ax, such as Wmx, Smx, Umx

or Sx. Since Sx is computed by cascading wavelet modulus
operators |Wm|, which are all contractive, it results that S is
also contractive:

kSx � Sx
0k  kx � x

0k . (25)

A scattering transform is therefore stable to additive noise.
If each wavelet transform is a tight frame, that is ↵ = 0

in (15), each |Wm| preserves the signal norm. Applying this
property to |Wm+1|Umx = (Smx , Um+1x) yields

kUmxk2
= kSmxk2

+ kUm+1xk2
. (26)

Summing these equations 0  m  l proves that

kxk2
= kSxk2

+ kUl+1xk2
. (27)

Under appropriate assumptions on the mother wavelet  , one
can prove that kUl+1xk goes to zero as l increases, which
implies that kSxk = kxk for l = 1 [11]. This property comes
from the fact that the modulus of analytic wavelet coefficients
computes a smooth envelope, and hence pushes energy towards
lower frequencies. By iterating on wavelet modulus operators,
the scattering transform progressively propagates all the en-
ergy of Umx towards lower frequencies, which is captured by
the low-pass filter of scattering coefficients Smx = Umx ? �.

One can verify numerically that kUl+1xk converges to zero
exponentially when l goes to infinity and hence that kSxk

T m = 0 m = 1 m = 2 m = 3

23 ms 0.0% 94.5% 4.8% 0.2%
93 ms 0.0% 68.0% 29.0% 1.9%
370 ms 0.0% 34.9% 53.3% 11.6%
1.5 s 0.0% 27.7% 56.1% 24.7%

TABLE I
AVERAGED VALUES kSmxk2/kxk2 COMPUTED FOR SIGNALS x IN THE

TIMIT SPEECH DATASET [33], AS A FUNCTION OF ORDER m AND
AVERAGING SCALE T . FOR m = 1, Smx IS CALCULATED BY MORLET

WAVELETS WITH Q1 = 8, AND FOR m = 2, 3 BY CUBIC SPLINE WAVELETS
WITH Q2 = Q3 = 1.

converges exponentially to kxk. Table I gives the fraction
of energy kSmxk2

/kxk2 absorbed by each scattering order.
Since audio signals have little energy at low frequencies,
S0x is very small and most of the energy is absorbed by
S1x for T = 23 ms. This explains why mel-frequency
spectrograms are typically sufficient at these small time scales.
However, as T increases, a progressively larger proportion
of energy is absorbed by higher-order scattering coefficients.
For T = 1.5 s, about 56% of the signal energy is captured
in S2x. Section VI shows that at this time scale, important
amplitude modulation information is carried by these second-
order coefficients. For T = 1.5 s, S3x carries 25% of the signal
energy. It increases as T increases, but for audio classification
applications studied in this paper, T remains below 1.5 s, so
these third-order coefficients are less important than first- and
second-order coefficients. We therefore concentrate on second-
order scattering representations:

Sx =

⇣
S0x(t) , S1x(t,�1) , S2x(t,�1,�2)

⌘

t,�1,�2

. (28)

C. Fast Scattering Computation

Subsampling scattering vectors provide a reduced repre-
sentation, which leads to a faster implementation. Since the
averaging window � has a duration of the order of T , we
compute scattering vectors with half-overlapping windows at
t = kT/2 with k 2 Z.

Andén & Mallat (2014)

• Filtres analytiques


• Pas d’apprentissage


• Propriétés explicites


• Architecture intuitive

Excellent résultats sur la classification de signaux audio (Andén 2014), 
électrocardiongrammes & chants d’oiseaux (Balestriero 2017)
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Réseau diffusif (scattering network)



Représentation du signal à travel un réseau diffusif
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Architecture du réseau diffusif

Filter bank #1 
Time scale: 2 second
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Time scale: 8 seconds
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Identification de familles avec un modèle de mélange gaussien

GMM peut identifier des familles avec des populations déséquilibrées

modified from 
Raykov et al. 
PONE (2016)

cluster data points in each dimension need to be sorted, which takes much more effort than
computing the mean.

Provided that a transformation of the entire data space can be found which “spherizes” each
cluster, then the spherical limitation of K-means can be mitigated. However, for most situa-
tions, finding such a transformation will not be trivial and is usually as difficult as finding the
clustering solution itself. Alternatively, by using the Mahalanobis distance, K-means can be

Fig 3. Clustering performed by K-means and MAP-DP for spherical, synthetic Gaussian data, with
outliers. All clusters have the same radii and density. There are two outlier groups with two outliers in each
group. K-means fails to find a good solution where MAP-DP succeeds; this is because K-means puts some
of the outliers in a separate cluster, thus inappropriately using up one of the K = 3 clusters. This happens
even if all the clusters are spherical, equal radii and well-separated.

doi:10.1371/journal.pone.0162259.g003

Fig 4. Clustering performed by K-means and MAP-DP for spherical, synthetic Gaussian data. Cluster
radii are equal and clusters are well-separated, but the data is unequally distributed across clusters: 69% of
the data is in the blue cluster, 29% in the yellow, 2% is orange. K-means fails to find a meaningful solution,
because, unlike MAP-DP, it cannot adapt to different cluster densities, even when the clusters are spherical,
have equal radii and are well-separated.

doi:10.1371/journal.pone.0162259.g004

MAP-DP: K-Means Alternative

PLOS ONE | DOI:10.1371/journal.pone.0162259 September 26, 2016 5 / 28
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(a) generated synthetic 
data from 3 normal 
processes with unbalanced 
covariance and population 
size

(b) K-means (c) GMM, a soft 
probabilistic 

version of K-mean

x ∼
K

∏
k=1

𝒩(μk, Σk)1{t=k}
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Quelle ondelette? 
Toutes ces ondelettes ont des propriétés particulières

Nous pouvons aussi apprendre l’ondelette qui résout une tâche donnée au mieux
12
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Glissement de terrain de Nuugaastiaq (2017) – faible précurseur sismique?

Seydoux et al. (rev.)14



Glissement de terrain de Nuugaastiaq (2017) – faible précurseur sismique?
Mise en évidence par template matching

Peut-on retrouver ces résultats à l’aveugle?

1. Template extraction and cross-correlation

2. Coherence-based detections

3. Analysis: power-law acceleration behavior

Template Les avantages 

• Robuste au bruit 


• Rapide à calculer


Les inconvénients 

• Sensible à la définition du template 


• Sensibles à plusieurs paramètres (fenêtre, fréquence)


• Limité à des signaux connus (classification à deux classes)

modified from Poli (2017)
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Seydoux et al. (rev.) Début – beaucoup de clusters identifiés, données éparpillées16
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Seydoux et al. (rev.) Après entrainement, certains points se concentrent, d'autres non17
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Poli et al., 2017]. From quantitative analysis of these data, I report time and amplitude evolution of the
precursory signals, which permit to constrain the psychics governing the nucleation of landslides.

2. Data and Methods

To quantify the evolution of precursory signals (Figure 2), I exploit their similarity and use a coherence-based
method [Gibbons and Ringdal, 2006] aimed at counting how many events are occurring in the hours before
landslide. To that end, I arbitrarily select a reference three-component waveform at station NUUG (Figure 2d)
and correlate it against 24 h of seismic data. The result is a daylong correlation coefficient trace (Figure 3).
When the correlation coefficient is above the threshold (8 times the median absolute deviation of the day-
long correlation), a precursor is detected (Figure 3). The result of this processing provides 83 newly detected
events. Given the similarities between the newly detected events, they can be stacked to improve the signal-
to-noise ratio [Brown et al., 2008] and to define a new reference trace. Using this new reference signal, I run
the coherence-based method [Gibbons and Ringdal, 2006; Brown et al., 2008] for the second time. This second
stage provides 95 detections (Figures 3 and 4).

The stack of 95 precursors shows clear P and S waves, similar to regular earthquakes. The P-S time provides
information regarding the distance to the station at which the process generating these waves is occurring.
I measure P to S delay of 4.6 s from the data in Figure 4b. This delay suggests that the waves are generated at
32 km from the recording station, which is also the distance from the landslide.

Having confirmed that the precursors are generated from the landslide area, I study their evolution in time. In
Figure 4a I show the cumulative number of events as function of time. The first precursor event is observed at
~5 A.M. on 17 June 2017. After this first event, there is a clear exponential-like growth of the precursors up to

Figure 3. Correlation coefficient trace, the red line is the threshold to declare a detection.

Figure 4. Time evolution of precursory signals. (a) Cumulative number of events as function of time. (b) The 95 detected events ranged as function of time. The
stack of these signals gives the (c) reference trace in which clear P and S waves are observed. (d) The amplitude time evolution is in clear agreement with the
exponential increment of events seen in Figure 4a.

Geophysical Research Letters 10.1002/2017GL075039

POLI SEISMIC PRECURSORS TO A LANDSLIDE 8834

WHAT WE NEED:  
FREQUENCY BAND 

WAVEFORM HISTORY

Poli (2017)

PRECURSORY SIGNAL DETECTIONS COMPARISON

Poli et al., 2017]. From quantitative analysis of these data, I report time and amplitude evolution of the
precursory signals, which permit to constrain the psychics governing the nucleation of landslides.

2. Data and Methods
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landslide. To that end, I arbitrarily select a reference three-component waveform at station NUUG (Figure 2d)
and correlate it against 24 h of seismic data. The result is a daylong correlation coefficient trace (Figure 3).
When the correlation coefficient is above the threshold (8 times the median absolute deviation of the day-
long correlation), a precursor is detected (Figure 3). The result of this processing provides 83 newly detected
events. Given the similarities between the newly detected events, they can be stacked to improve the signal-
to-noise ratio [Brown et al., 2008] and to define a new reference trace. Using this new reference signal, I run
the coherence-based method [Gibbons and Ringdal, 2006; Brown et al., 2008] for the second time. This second
stage provides 95 detections (Figures 3 and 4).

The stack of 95 precursors shows clear P and S waves, similar to regular earthquakes. The P-S time provides
information regarding the distance to the station at which the process generating these waves is occurring.
I measure P to S delay of 4.6 s from the data in Figure 4b. This delay suggests that the waves are generated at
32 km from the recording station, which is also the distance from the landslide.

Having confirmed that the precursors are generated from the landslide area, I study their evolution in time. In
Figure 4a I show the cumulative number of events as function of time. The first precursor event is observed at
~5 A.M. on 17 June 2017. After this first event, there is a clear exponential-like growth of the precursors up to
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method [Gibbons and Ringdal, 2006] aimed at counting how many events are occurring in the hours before
landslide. To that end, I arbitrarily select a reference three-component waveform at station NUUG (Figure 2d)
and correlate it against 24 h of seismic data. The result is a daylong correlation coefficient trace (Figure 3).
When the correlation coefficient is above the threshold (8 times the median absolute deviation of the day-
long correlation), a precursor is detected (Figure 3). The result of this processing provides 83 newly detected
events. Given the similarities between the newly detected events, they can be stacked to improve the signal-
to-noise ratio [Brown et al., 2008] and to define a new reference trace. Using this new reference signal, I run
the coherence-based method [Gibbons and Ringdal, 2006; Brown et al., 2008] for the second time. This second
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The stack of 95 precursors shows clear P and S waves, similar to regular earthquakes. The P-S time provides
information regarding the distance to the station at which the process generating these waves is occurring.
I measure P to S delay of 4.6 s from the data in Figure 4b. This delay suggests that the waves are generated at
32 km from the recording station, which is also the distance from the landslide.

Having confirmed that the precursors are generated from the landslide area, I study their evolution in time. In
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~5 A.M. on 17 June 2017. After this first event, there is a clear exponential-like growth of the precursors up to

Figure 3. Correlation coefficient trace, the red line is the threshold to declare a detection.

Figure 4. Time evolution of precursory signals. (a) Cumulative number of events as function of time. (b) The 95 detected events ranged as function of time. The
stack of these signals gives the (c) reference trace in which clear P and S waves are observed. (d) The amplitude time evolution is in clear agreement with the
exponential increment of events seen in Figure 4a.

Geophysical Research Letters 10.1002/2017GL075039

POLI SEISMIC PRECURSORS TO A LANDSLIDE 8834

WHAT WE NEED:  
FREQUENCY BAND 

WAVEFORM HISTORY

Poli (2017)

PRECURSORY SIGNAL DETECTIONS COMPARISON

Poli et al., 2017]. From quantitative analysis of these data, I report time and amplitude evolution of the
precursory signals, which permit to constrain the psychics governing the nucleation of landslides.
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method [Gibbons and Ringdal, 2006] aimed at counting how many events are occurring in the hours before
landslide. To that end, I arbitrarily select a reference three-component waveform at station NUUG (Figure 2d)
and correlate it against 24 h of seismic data. The result is a daylong correlation coefficient trace (Figure 3).
When the correlation coefficient is above the threshold (8 times the median absolute deviation of the day-
long correlation), a precursor is detected (Figure 3). The result of this processing provides 83 newly detected
events. Given the similarities between the newly detected events, they can be stacked to improve the signal-
to-noise ratio [Brown et al., 2008] and to define a new reference trace. Using this new reference signal, I run
the coherence-based method [Gibbons and Ringdal, 2006; Brown et al., 2008] for the second time. This second
stage provides 95 detections (Figures 3 and 4).

The stack of 95 precursors shows clear P and S waves, similar to regular earthquakes. The P-S time provides
information regarding the distance to the station at which the process generating these waves is occurring.
I measure P to S delay of 4.6 s from the data in Figure 4b. This delay suggests that the waves are generated at
32 km from the recording station, which is also the distance from the landslide.

Having confirmed that the precursors are generated from the landslide area, I study their evolution in time. In
Figure 4a I show the cumulative number of events as function of time. The first precursor event is observed at
~5 A.M. on 17 June 2017. After this first event, there is a clear exponential-like growth of the precursors up to
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Sample proximity to centroids

Cumulative detections

2017 landslide

Discussion – classification du bruit à de plus grandes échelles

On ne voit plus la (rare) sismicité, mais des 
structures relativement stables dans le bruit.
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Conclusions 

Scattering network is used as a stable multiple 
time-scale representation of the seismic data


PCA and GMM are used to cluster the seismic data 
in a two-dimensional space 


We learn the wavelet that minimizes the clustering 
loss (representation learning)


We were able to blindly recover the precursory 
repeater preceding the main landslide rupture



Annexes



Japan hi-net

UWAH

OOZH

UWAH

OOZH

Broadband records at two stations located 50 km apart

Clusters obtained separately at the two stations

M1.2 earthquake

Discussion – towards single-station detection of non-volcanic tremors

Two continuous records independently 
analyzed lead to the same clusters
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Discussion – clusters versus meteorological data
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Appendix – parental normalization of the scattering coefficients

Several order of magnitude of amplitude difference between signals in the seismic data. 

We normalize the amplitude w.r.t. the parent scattering coefficients.

÷

1st-order normalized scattering 
coefficients

Divide

÷

1st-order scat. coeff. 
of absolute signal

1st-order scattering coefficients

2nd-order scattering coefficients
2nd-order normalized scattering 

coefficients

Siffre et al. (2013)
A



Anden & Mallat IEEE (2014)
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Fig. 7. (a): Scalogram log |x? �1 (t)| for a signal with three voiced sounds
of same pitch ⇠ = 600 Hz and same h(t) but different amplitude modulations
a(t): first a smooth attack, then a sharp attack, then a tremolo of frequency ⌘.
It is followed by three unvoiced sounds created with the same h(t) and same
amplitude modulations a(t) as the first three voiced sounds. (b): First-order
scattering log eS1x(t,�1) with T = 128 ms. (c): Second-order scattering
log eS2x(t,�1,�2) displayed for �1 = 4⇠, as a function of t and �2.

by � and the normalization remove the effect of the different
modulation amplitudes a(t) of these three voiced sounds.

Figure 7(c) displays log eS2(t,�1,�2) for the fourth partial
�1 = 4⇠, as a function of �2. The modulation envelope a(t)

of the first sound has a smooth attack and thus produces
large coefficients only at low frequencies �2. The envelope
a(t) of the second sound has a much sharper attack and thus
produces large amplitude coefficients for higher frequencies
�2. The third sound is modulated by a tremolo, which is a
periodic oscillation a(t) = 1 + ✏ cos (⌘t). According to (43),
this tremolo creates large amplitude coefficients when �2 = ⌘,
as shown in Figure 7(c).

Unvoiced sounds are modeled by excitations e(t) which
are realizations of Gaussian white noise. The modulation
amplitude is typically non-sparse, which means the square of
the average of a(t) on intervals of size T is of the order of
the average of a

2
(t). Appendix A shows that

eS1x(t,�1) ⇡
⇡k k
23/2

�1
1/2 |bh(�1)|

khk . (44)

Similarly to (42), eS1x(t,�1) is proportional to |bh(�1)| but
does not have a harmonic structure. This is shown in Figure
7(b) by the last three unvoiced sounds. The fourth, fifth, and
sixth sounds have the same filter h(t) and envelope a(t) as
the first, second, and third sounds, respectively, but with a
Gaussian white noise excitation e(t).

Similarly to (43), Appendix A also shows that

eS2x(t,�1,�2) =
|a ?  �2 | ? �(t)

a ? �(t)
+ e✏(t)

where e✏(t) is small relatively to the first amplitude modulation
term if (4/⇡� 1)

1/2
(�2Q1)

1/2
(�1Q2)

�1/2 is small relatively
to this modulation term. For voiced and unvoiced sounds,
eS2x(t,�1,�2) mainly depends upon the amplitude modulation

a(t). This is illustrated by Figure 7(c), which shows that the
fourth, fifth, and sixth sounds have second-order coefficients
similar to those of the first, second, and third sounds, re-
spectively. The stochastic error term e✏ produced by unvoiced
sounds appears as random low-amplitude fluctuations in Figure
7(c).

VII. FREQUENCY TRANSPOSITION INVARIANCE

Audio signals within the same class may be transposed
in frequency. Frequency transposition occurs when a single
word is pronounced by different speakers. It is a complex
phenomenon which affects the pitch and the spectral envelope.
The envelope is translated on a logarithmic frequency scale but
also deformed. We thus need a representation which is invari-
ant to frequency translation on a logarithmic scale, and which
also is stable to frequency deformations. After reviewing the
mel-frequency cepstral coefficient (MFCC) approach through
the discrete cosine transform (DCT), this section defines such
a representation with a scattering transform computed along
log-frequency.

MFCCs are computed from the log-mel-frequency spec-
trogram log Mx(t,�) by calculating a DCT along the mel-
frequency index � for a fixed t [38]. This � is linear in �

for low frequencies, but is proportional to log2 � for higher
frequencies. For simplicity, we write � = log2 � and � = 2

� ,
although this should be modified at low frequencies.

The frequency index of the DCT is called the “quefrency”
parameter. In MFCCs, high-quefrency coefficients are often set
to zero, which is equivalent to averaging log Mx(t, 2

�
) along

� and provides some frequency transposition invariance. The
more high-quefrency coefficients are set to zero, the bigger
the averaging and hence the more transposition invariance
obtained, but at the expense of losing potentially important
information.

The loss of information due to averaging along � can be
recovered by computing wavelet coefficients along �. We
thus replace the DCT by a scattering transform along �. A
frequency scattering transform is calculated by iteratively ap-
plying wavelet transforms and modulus operators. An analytic
wavelet transform of a log-frequency dependent signal z(�)

is defined as in (13), but with convolutions along the log-
frequency variable � instead of time:

W
fr
z =

⇣
z ? �

fr
(�) , z ?  q(�)

⌘

�,q
. (45)

Each wavelet  q is a band-pass filter whose Fourier transform
b q is centered at “quefrency” q and �fr is an averaging filter.
These wavelets satisfy the condition (15), so W

fr is contractive
and invertible.

Although the scattering transform along � can be com-
puted at any order, we restrict ourself to zero and first-order
scattering coefficients, because it seems to be sufficient for
classification. A first-order scattering transform of z(�) is
calculated from

U
fr
z =

⇣
z(�) , |z ?  q1(�)|

⌘
, (46)

by averaging these coefficients along � with �fr:

S
fr
z =

⇣
z ? �

fr
(�) , |z ?  q1 | ? �fr

(�)

⌘
. (47)
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of same pitch ⇠ = 600 Hz and same h(t) but different amplitude modulations
a(t): first a smooth attack, then a sharp attack, then a tremolo of frequency ⌘.
It is followed by three unvoiced sounds created with the same h(t) and same
amplitude modulations a(t) as the first three voiced sounds. (b): First-order
scattering log eS1x(t,�1) with T = 128 ms. (c): Second-order scattering
log eS2x(t,�1,�2) displayed for �1 = 4⇠, as a function of t and �2.

by � and the normalization remove the effect of the different
modulation amplitudes a(t) of these three voiced sounds.

Figure 7(c) displays log eS2(t,�1,�2) for the fourth partial
�1 = 4⇠, as a function of �2. The modulation envelope a(t)

of the first sound has a smooth attack and thus produces
large coefficients only at low frequencies �2. The envelope
a(t) of the second sound has a much sharper attack and thus
produces large amplitude coefficients for higher frequencies
�2. The third sound is modulated by a tremolo, which is a
periodic oscillation a(t) = 1 + ✏ cos (⌘t). According to (43),
this tremolo creates large amplitude coefficients when �2 = ⌘,
as shown in Figure 7(c).

Unvoiced sounds are modeled by excitations e(t) which
are realizations of Gaussian white noise. The modulation
amplitude is typically non-sparse, which means the square of
the average of a(t) on intervals of size T is of the order of
the average of a

2
(t). Appendix A shows that

eS1x(t,�1) ⇡
⇡k k
23/2

�1
1/2 |bh(�1)|

khk . (44)

Similarly to (42), eS1x(t,�1) is proportional to |bh(�1)| but
does not have a harmonic structure. This is shown in Figure
7(b) by the last three unvoiced sounds. The fourth, fifth, and
sixth sounds have the same filter h(t) and envelope a(t) as
the first, second, and third sounds, respectively, but with a
Gaussian white noise excitation e(t).

Similarly to (43), Appendix A also shows that

eS2x(t,�1,�2) =
|a ?  �2 | ? �(t)
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+ e✏(t)

where e✏(t) is small relatively to the first amplitude modulation
term if (4/⇡� 1)
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�1/2 is small relatively
to this modulation term. For voiced and unvoiced sounds,
eS2x(t,�1,�2) mainly depends upon the amplitude modulation

a(t). This is illustrated by Figure 7(c), which shows that the
fourth, fifth, and sixth sounds have second-order coefficients
similar to those of the first, second, and third sounds, re-
spectively. The stochastic error term e✏ produced by unvoiced
sounds appears as random low-amplitude fluctuations in Figure
7(c).

VII. FREQUENCY TRANSPOSITION INVARIANCE

Audio signals within the same class may be transposed
in frequency. Frequency transposition occurs when a single
word is pronounced by different speakers. It is a complex
phenomenon which affects the pitch and the spectral envelope.
The envelope is translated on a logarithmic frequency scale but
also deformed. We thus need a representation which is invari-
ant to frequency translation on a logarithmic scale, and which
also is stable to frequency deformations. After reviewing the
mel-frequency cepstral coefficient (MFCC) approach through
the discrete cosine transform (DCT), this section defines such
a representation with a scattering transform computed along
log-frequency.

MFCCs are computed from the log-mel-frequency spec-
trogram log Mx(t,�) by calculating a DCT along the mel-
frequency index � for a fixed t [38]. This � is linear in �

for low frequencies, but is proportional to log2 � for higher
frequencies. For simplicity, we write � = log2 � and � = 2

� ,
although this should be modified at low frequencies.

The frequency index of the DCT is called the “quefrency”
parameter. In MFCCs, high-quefrency coefficients are often set
to zero, which is equivalent to averaging log Mx(t, 2

�
) along

� and provides some frequency transposition invariance. The
more high-quefrency coefficients are set to zero, the bigger
the averaging and hence the more transposition invariance
obtained, but at the expense of losing potentially important
information.

The loss of information due to averaging along � can be
recovered by computing wavelet coefficients along �. We
thus replace the DCT by a scattering transform along �. A
frequency scattering transform is calculated by iteratively ap-
plying wavelet transforms and modulus operators. An analytic
wavelet transform of a log-frequency dependent signal z(�)

is defined as in (13), but with convolutions along the log-
frequency variable � instead of time:

W
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⌘
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Each wavelet  q is a band-pass filter whose Fourier transform
b q is centered at “quefrency” q and �fr is an averaging filter.
These wavelets satisfy the condition (15), so W

fr is contractive
and invertible.

Although the scattering transform along � can be com-
puted at any order, we restrict ourself to zero and first-order
scattering coefficients, because it seems to be sufficient for
classification. A first-order scattering transform of z(�) is
calculated from

U
fr
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by averaging these coefficients along � with �fr:
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a(t): first a smooth attack, then a sharp attack, then a tremolo of frequency ⌘.
It is followed by three unvoiced sounds created with the same h(t) and same
amplitude modulations a(t) as the first three voiced sounds. (b): First-order
scattering log eS1x(t,�1) with T = 128 ms. (c): Second-order scattering
log eS2x(t,�1,�2) displayed for �1 = 4⇠, as a function of t and �2.

by � and the normalization remove the effect of the different
modulation amplitudes a(t) of these three voiced sounds.

Figure 7(c) displays log eS2(t,�1,�2) for the fourth partial
�1 = 4⇠, as a function of �2. The modulation envelope a(t)

of the first sound has a smooth attack and thus produces
large coefficients only at low frequencies �2. The envelope
a(t) of the second sound has a much sharper attack and thus
produces large amplitude coefficients for higher frequencies
�2. The third sound is modulated by a tremolo, which is a
periodic oscillation a(t) = 1 + ✏ cos (⌘t). According to (43),
this tremolo creates large amplitude coefficients when �2 = ⌘,
as shown in Figure 7(c).

Unvoiced sounds are modeled by excitations e(t) which
are realizations of Gaussian white noise. The modulation
amplitude is typically non-sparse, which means the square of
the average of a(t) on intervals of size T is of the order of
the average of a

2
(t). Appendix A shows that

eS1x(t,�1) ⇡
⇡k k
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khk . (44)

Similarly to (42), eS1x(t,�1) is proportional to |bh(�1)| but
does not have a harmonic structure. This is shown in Figure
7(b) by the last three unvoiced sounds. The fourth, fifth, and
sixth sounds have the same filter h(t) and envelope a(t) as
the first, second, and third sounds, respectively, but with a
Gaussian white noise excitation e(t).

Similarly to (43), Appendix A also shows that
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|a ?  �2 | ? �(t)

a ? �(t)
+ e✏(t)
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�1/2 is small relatively
to this modulation term. For voiced and unvoiced sounds,
eS2x(t,�1,�2) mainly depends upon the amplitude modulation

a(t). This is illustrated by Figure 7(c), which shows that the
fourth, fifth, and sixth sounds have second-order coefficients
similar to those of the first, second, and third sounds, re-
spectively. The stochastic error term e✏ produced by unvoiced
sounds appears as random low-amplitude fluctuations in Figure
7(c).

VII. FREQUENCY TRANSPOSITION INVARIANCE

Audio signals within the same class may be transposed
in frequency. Frequency transposition occurs when a single
word is pronounced by different speakers. It is a complex
phenomenon which affects the pitch and the spectral envelope.
The envelope is translated on a logarithmic frequency scale but
also deformed. We thus need a representation which is invari-
ant to frequency translation on a logarithmic scale, and which
also is stable to frequency deformations. After reviewing the
mel-frequency cepstral coefficient (MFCC) approach through
the discrete cosine transform (DCT), this section defines such
a representation with a scattering transform computed along
log-frequency.

MFCCs are computed from the log-mel-frequency spec-
trogram log Mx(t,�) by calculating a DCT along the mel-
frequency index � for a fixed t [38]. This � is linear in �

for low frequencies, but is proportional to log2 � for higher
frequencies. For simplicity, we write � = log2 � and � = 2

� ,
although this should be modified at low frequencies.

The frequency index of the DCT is called the “quefrency”
parameter. In MFCCs, high-quefrency coefficients are often set
to zero, which is equivalent to averaging log Mx(t, 2

�
) along

� and provides some frequency transposition invariance. The
more high-quefrency coefficients are set to zero, the bigger
the averaging and hence the more transposition invariance
obtained, but at the expense of losing potentially important
information.

The loss of information due to averaging along � can be
recovered by computing wavelet coefficients along �. We
thus replace the DCT by a scattering transform along �. A
frequency scattering transform is calculated by iteratively ap-
plying wavelet transforms and modulus operators. An analytic
wavelet transform of a log-frequency dependent signal z(�)

is defined as in (13), but with convolutions along the log-
frequency variable � instead of time:

W
fr
z =

⇣
z ? �

fr
(�) , z ?  q(�)

⌘

�,q
. (45)

Each wavelet  q is a band-pass filter whose Fourier transform
b q is centered at “quefrency” q and �fr is an averaging filter.
These wavelets satisfy the condition (15), so W

fr is contractive
and invertible.

Although the scattering transform along � can be com-
puted at any order, we restrict ourself to zero and first-order
scattering coefficients, because it seems to be sufficient for
classification. A first-order scattering transform of z(�) is
calculated from

U
fr
z =

⇣
z(�) , |z ?  q1(�)|

⌘
, (46)

by averaging these coefficients along � with �fr:

S
fr
z =

⇣
z ? �

fr
(�) , |z ?  q1 | ? �fr

(�)

⌘
. (47)

Scalogram

1st order scattering coefficients

2nd order scattering coefficients

Harmonic sources Noise sources

Toy example: a two-layer scattering network

B



Ongoing work – differentiate between seismic phases
Dense Array for North Anatolian 
fault

Analysis of a M1.6 earthquake

C



Diversity of definition leads to variety of algorithms

We need data experts to have a priori on the data in order to select the right algorithm

scikit-learn.org

Cluster analysis – pick up the right one!

5



k means 
Find K clusters based 
on Euclidian distance

Which algorithm is best suited for your dataset?

data points 3 clusters

Bo
un
da
ry
  

de
ci
si
on

Cluster analysis – example of similarity-based clustering
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We need to extract features that have some properties of invariance

Waveform clustering
How can we consider waveform data?

A waveform is a point in a N 
dimensional space


Time-domain representation is highly 
unstable (sensitive to translation in 
time, amplitude, frequency, etc.)

N-points waveform 
correlation: 32% !

6



Waveform 
x ∈ ℝN

Features 
x′ ∈ ℝF

Clustering 
c ∈ ℕC

Dependent to: 
Translation in time 
Deformation (scattering) 
Frequency content 
Not suited for clustering

Waveform clustering
General workflow

Find groups based on 
similarity in the feature 
similarity

Which features have 
invariance properties?

How do we select the right features? 
7



Neural networks

f(x) = y

"a cat"

9



Neural networks

input 
(e.g. image)

label A 
"a cat"

label B 
"a dog"

f(x) = y

"a cat"

x f y

Neural networks can 
approximate highly 
non-linear functions

9



Neural networks

Figure 2.1: (No padding, unit strides) Convolving a 3 ⇥ 3 kernel over a 4 ⇥ 4
input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).

Figure 2.2: (Arbitrary padding, unit strides) Convolving a 4⇥ 4 kernel over a
5 ⇥ 5 input padded with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5,
k = 4, s = 1 and p = 2).

Figure 2.3: (Half padding, unit strides) Convolving a 3⇥ 3 kernel over a 5⇥ 5
input using half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1).

Figure 2.4: (Full padding, unit strides) Convolving a 3⇥ 3 kernel over a 5⇥ 5
input using full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2).

14

image

feature

conv. filter

Learn to recognize patterns

Dumoulin & Visin (2018)

input 
(e.g. image)

label A 
"a cat"

label B 
"a dog"

convolution 

and activation   

feature

f(x) = y

"a cat"
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Neural networks

Figure 2.1: (No padding, unit strides) Convolving a 3 ⇥ 3 kernel over a 4 ⇥ 4
input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).

Figure 2.2: (Arbitrary padding, unit strides) Convolving a 4⇥ 4 kernel over a
5 ⇥ 5 input padded with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5,
k = 4, s = 1 and p = 2).

Figure 2.3: (Half padding, unit strides) Convolving a 3⇥ 3 kernel over a 5⇥ 5
input using half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1).

Figure 2.4: (Full padding, unit strides) Convolving a 3⇥ 3 kernel over a 5⇥ 5
input using full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2).

14

image

feature

conv. filter

Learn to recognize patterns

Dumoulin & Visin (2018)

input 
(e.g. image)

label A 
"a cat"

label B 
"a dog"

convolution 

and activation   

feature

f(x) = y

"a cat"
Non linear activation function

9



Wavelet transform

Wavelets are localized in time and frequency

Explore the time and frequency content of a one-dimensional signal with 
convolution with different wavelets localized in time and frequency

Wx(λ, t) = (ψλ ⊗ x)(t)

12



Robustness to scattering 
network design

7 knots

11 knots

15 knots

Regular case (this study)

Low time scale (16 seconds)

Large time scale (64 seconds)

Learned 
wavelets

Daylong 
seismogram

Scattering 
transform

Latent space

Cluster

Learn

Seydoux et al. (rev.)

Different parameters always recover the precursory pattern25



Idea of a scattering network

sc
al
e

Filter bank

time

sc
al
e

Seismogram

modulusconvolution

Scalogram (1)

time

The first layer is a time-frequency representation of the waveform 
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Idea of a scattering network

sc
al
e

Filter bank

time

sc
al
e

time

Seismogram

modulusconvolution

Scattering coefficients (1)Scalogram (1)

pool

time

The first-order scattering coefficients provide a locally stable 
signal description at small time scales.

The first layer is a time-frequency representation of the waveform 
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Idea of a scattering network

sc
al
e

Filter bank

time

sc
al
e

time

sc
al
e

Seismogram

modulusconvolution

modulusconvolution

Larger time scales are analyzed at second order 

Scattering coefficients (1)Scalogram (1)

Scalogram (2)

pool

time

timeFilter bank

time

sc
al
e

13



Learnable wavelets from Hermite cubic spline interpolation

1. Amplitude and derivative learned at knots 
2. Full wavelet interpolated with cubic splines 

3. Filter bank obtained from 
dilation of the mother wavelet 

We can learn the wavelets given any task (e.g. clustering, classification, …). 
Only a few coefficients are learned compared with classical convolutional nets

18

Balestriero et al. (2019)


