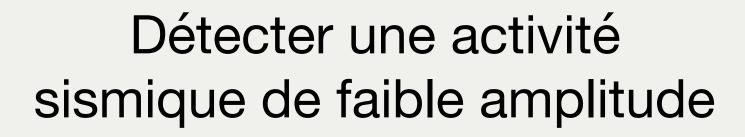
Identification de familles de signaux par apprentissage profond dans les données sismiques continues

Léonard Seydoux¹, Randall Balestriero², Piero Poli¹, Maarten de Hoop³, Michel Campillo¹ and Richard Baraniuk²

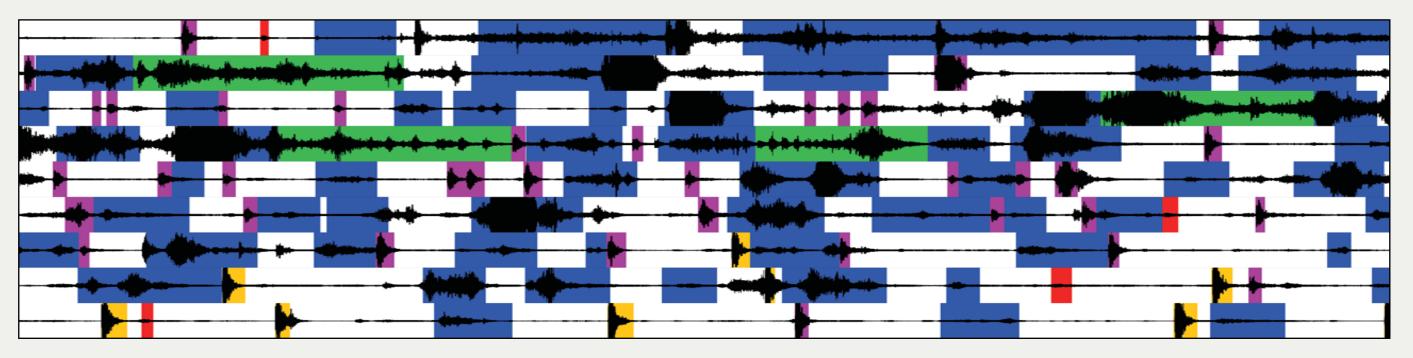
1. ISTerre, Grenoble, France 2. Electrical and Computational Engineering and 3. Computational and Applied Mathematics, Rice University, Houston, TX

Motivations – détection & identification de signaux dans données continues

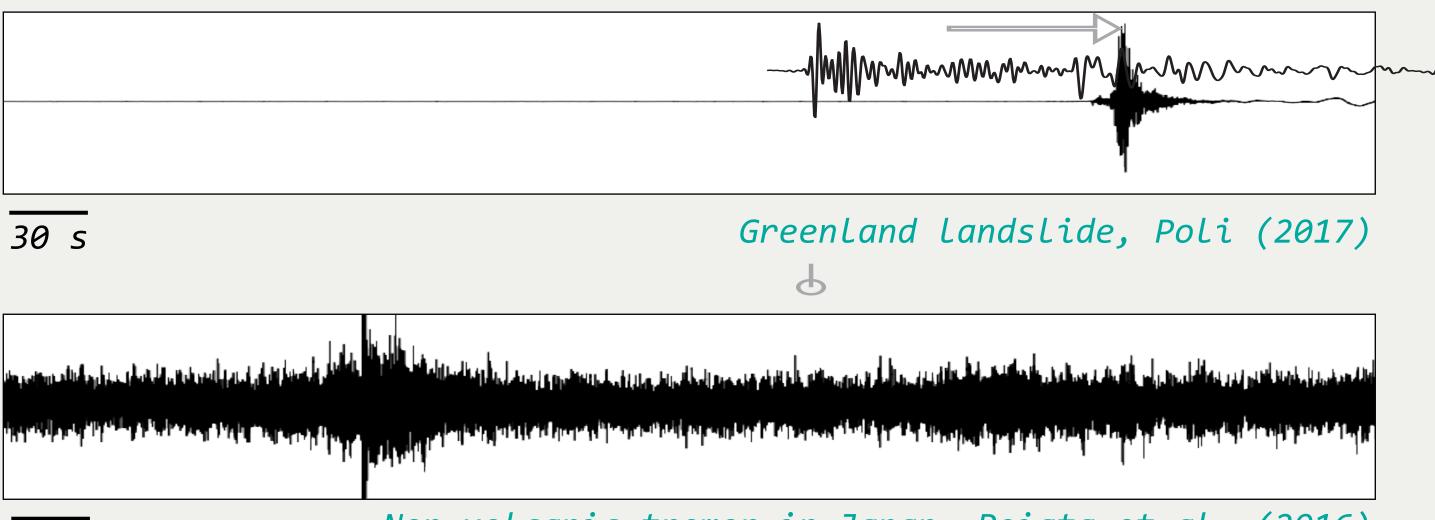
Identifier automatiquement de grandes bases de données

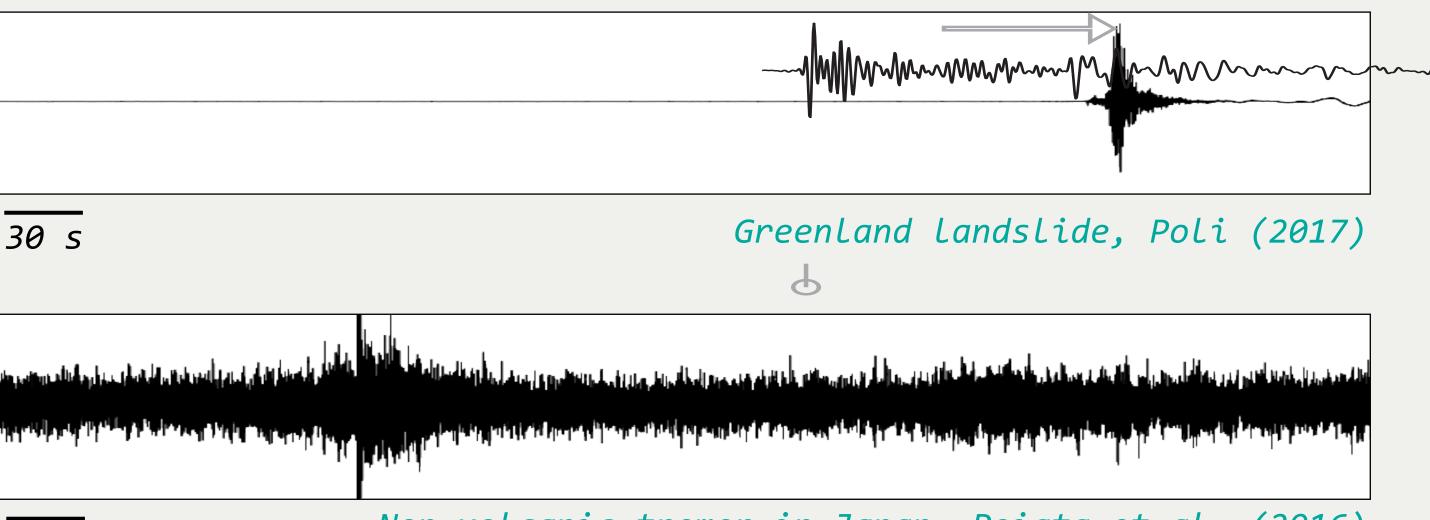


Détecter des signaux émergents



2 hrs





5 min

Mettre en évidence des **nouvelles classes** de signaux sismiques

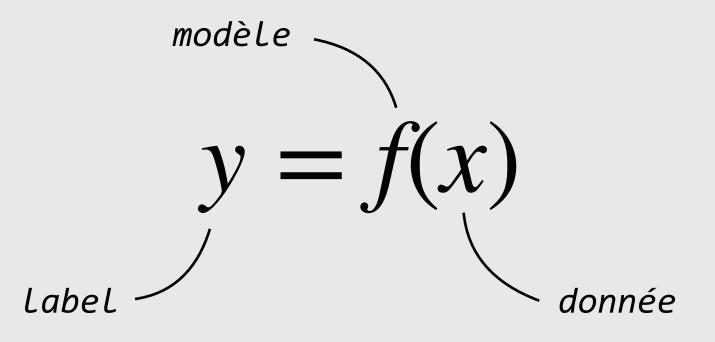
clusters in continuous data, Beyreuther (2012)

Non-volcanic tremor in Japan, Poiata et al. (2016)

Identification de familles – méthode supervisée et non-supervisée

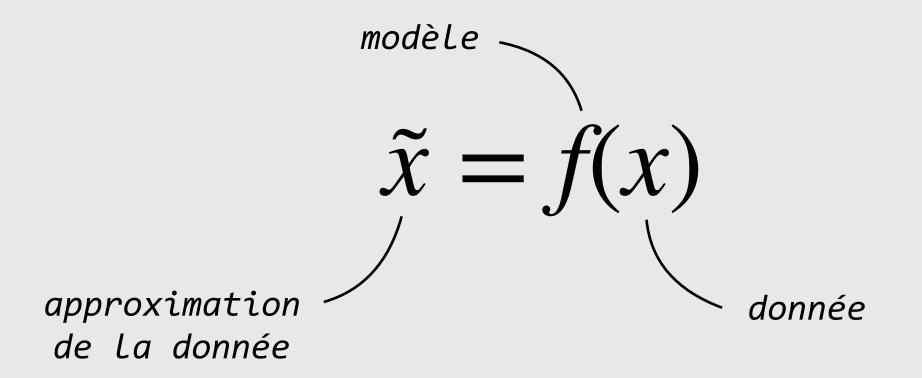
Supervisée (classification)

Régression entre les labels et la donnée

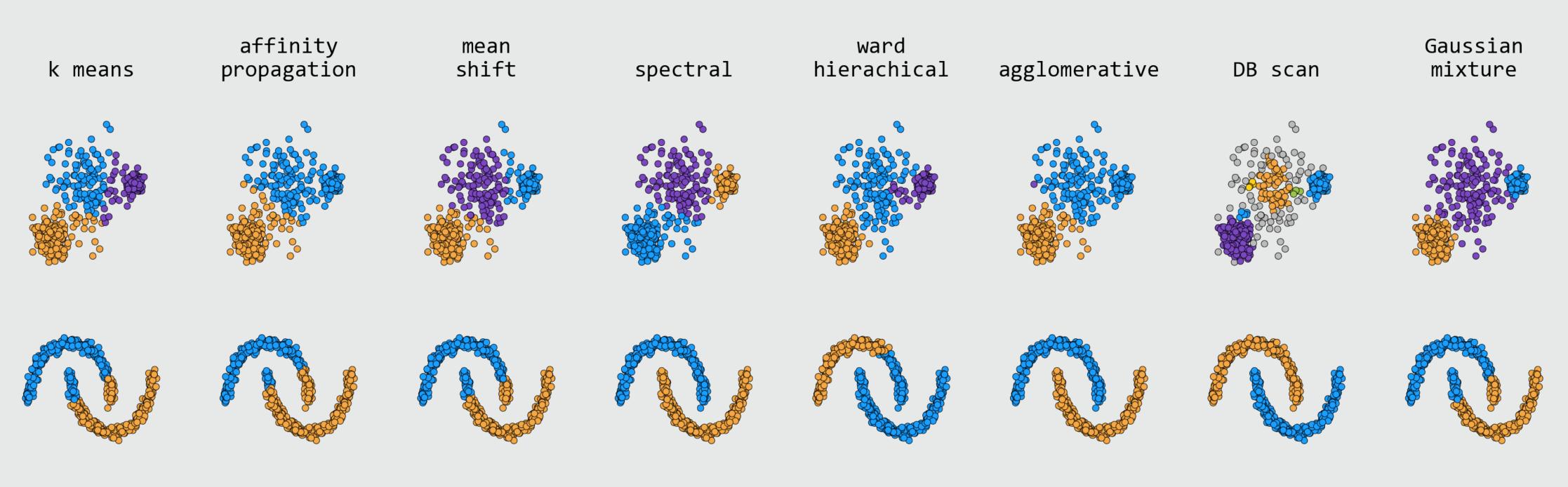


Non-supervisée (clustering)

Modélisation de la distribution des données



Identification de familles – un grand nombre de définitions, autant de solutions

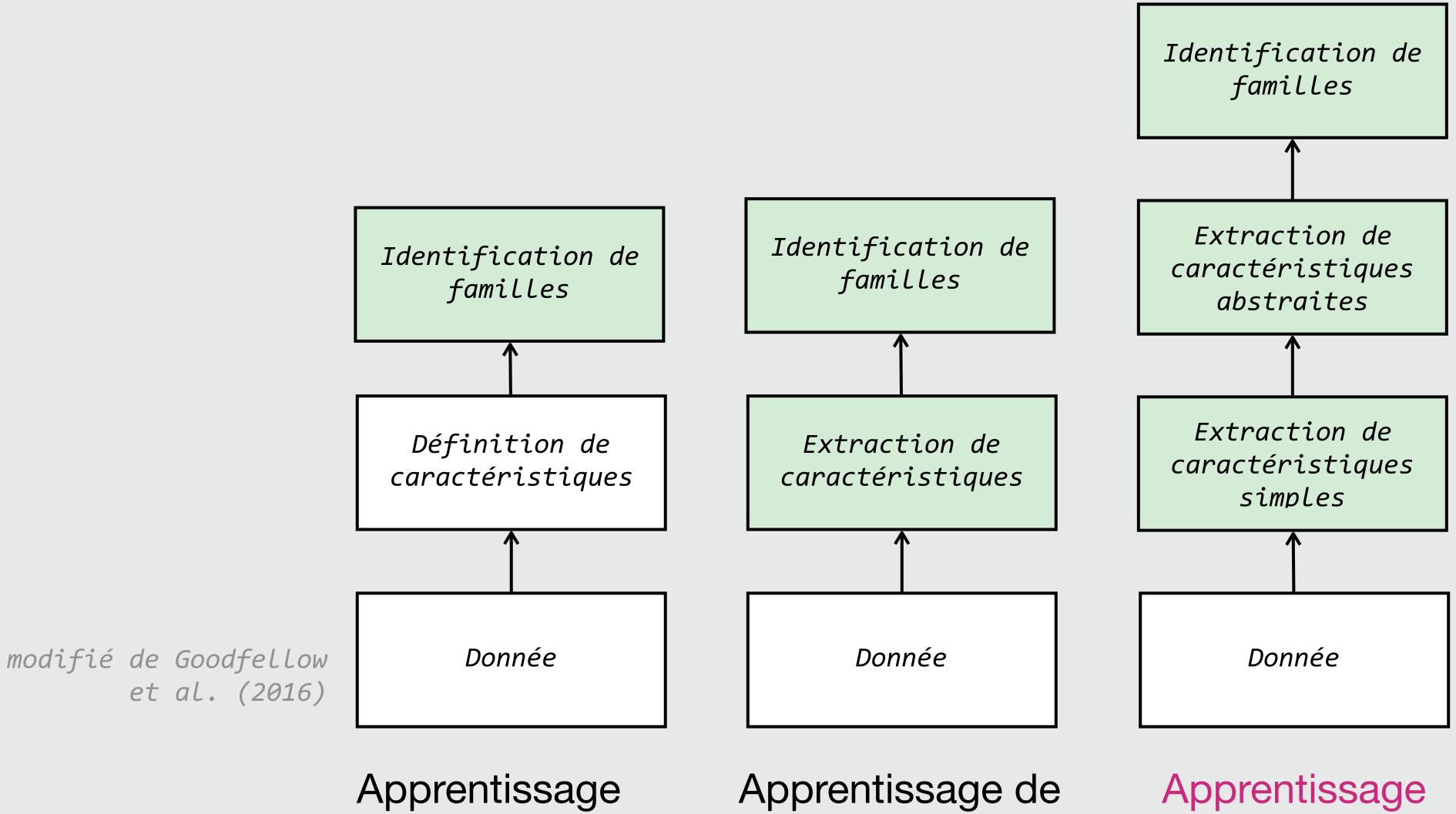


Aldenderfer & Bashfield (1984), Duda & Hart (1973), Estivill-Castro (2002)

C'est une tâche d'exploration, tout résultat a du sens

source: <u>scikit-learn.org</u>

Cas particulier – identification de familles de formes d'onde

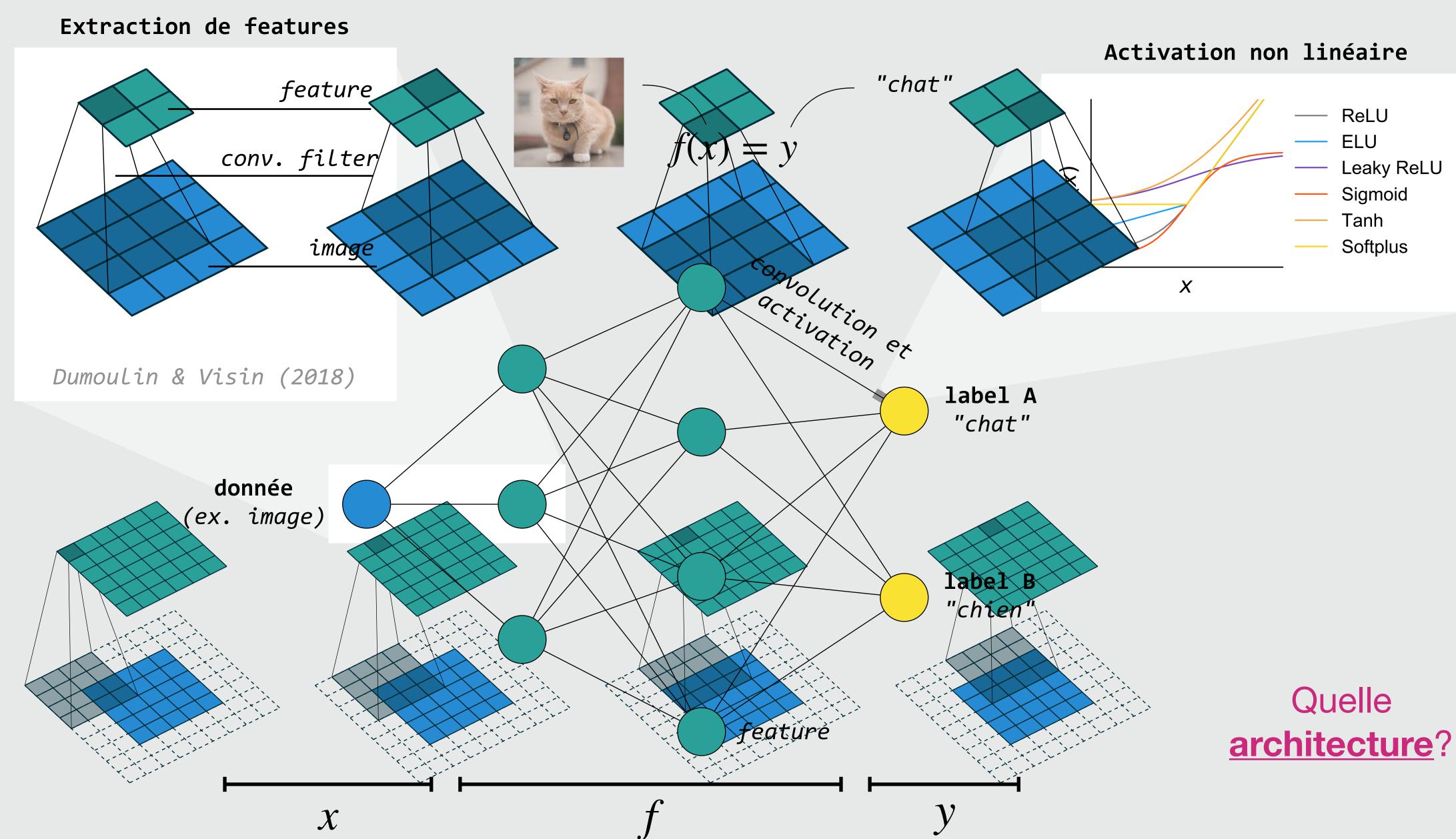


classique

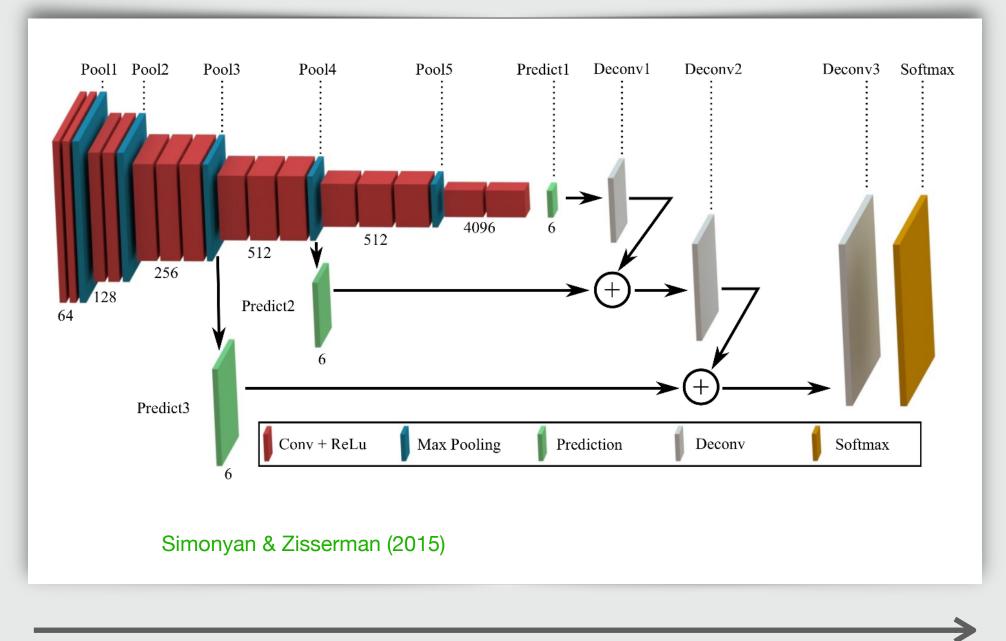
représentation

profond

Concept des réseaux de neurones convolutifs



Exemple d'un grand champion de la classification d'images

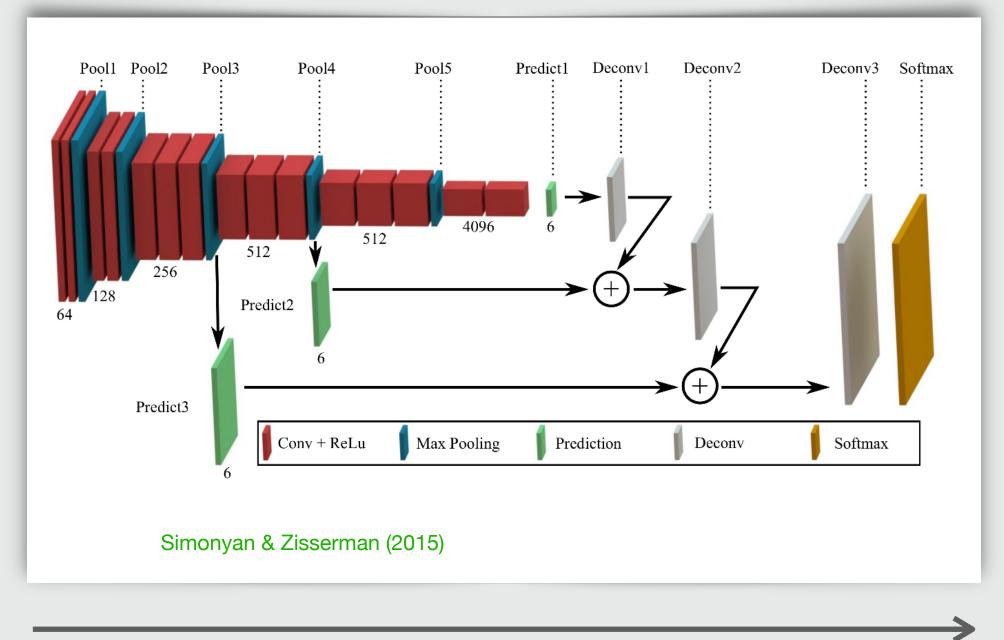


Deep convolutional VGG16

Du détail à l'abstrait

Cette architecture est le fruit d'essais empiriques inspirés par la nature

Exemple d'un grand champion de la classification d'images



Deep convolutional VGG16

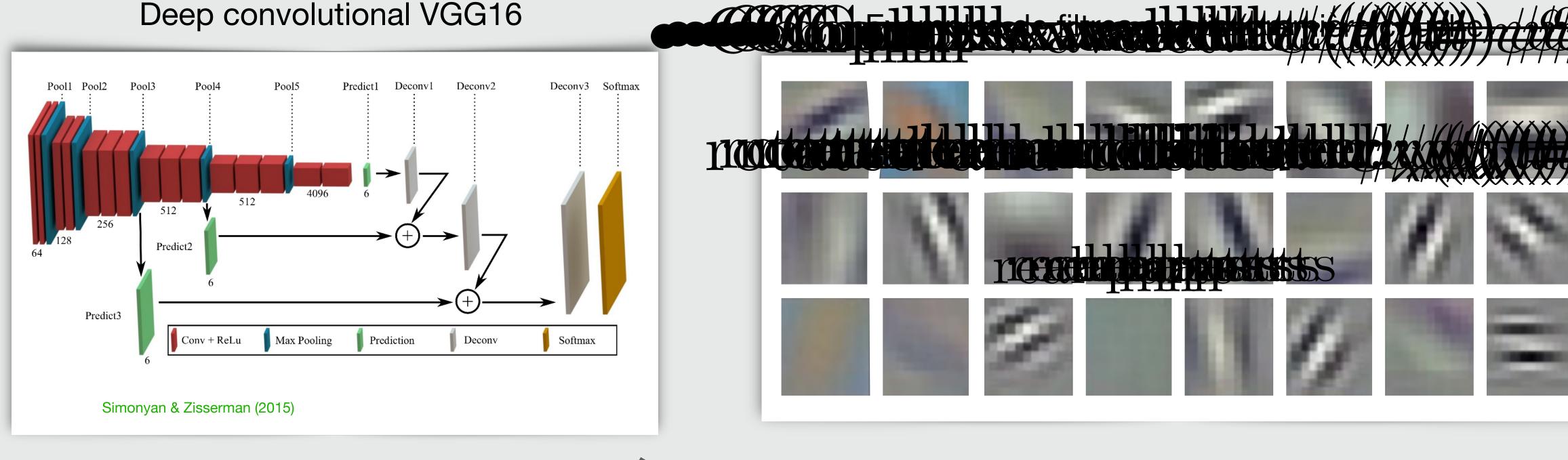
Du détail à l'abstrait

Cette architecture est le fruit d'essais empiriques inspirés par la nature

Exemples de filtres appris (première couche)

Les filtres de VGG16 sont sensibles à l'orientation

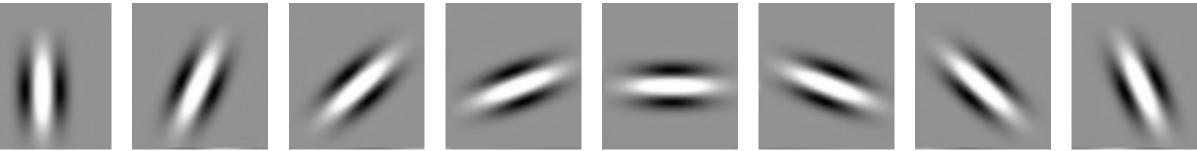
Exemple d'un grand champion de la classification d'images



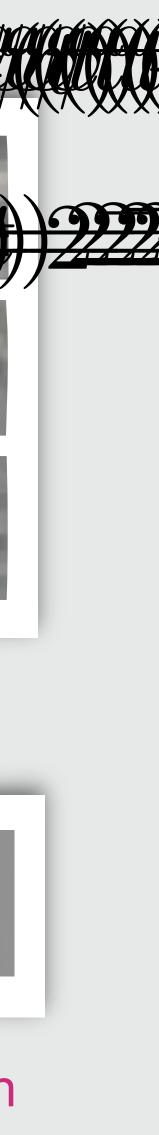
Du détail à l'abstrait

Cette architecture est le fruit d'essais empiriques inspirés par la nature

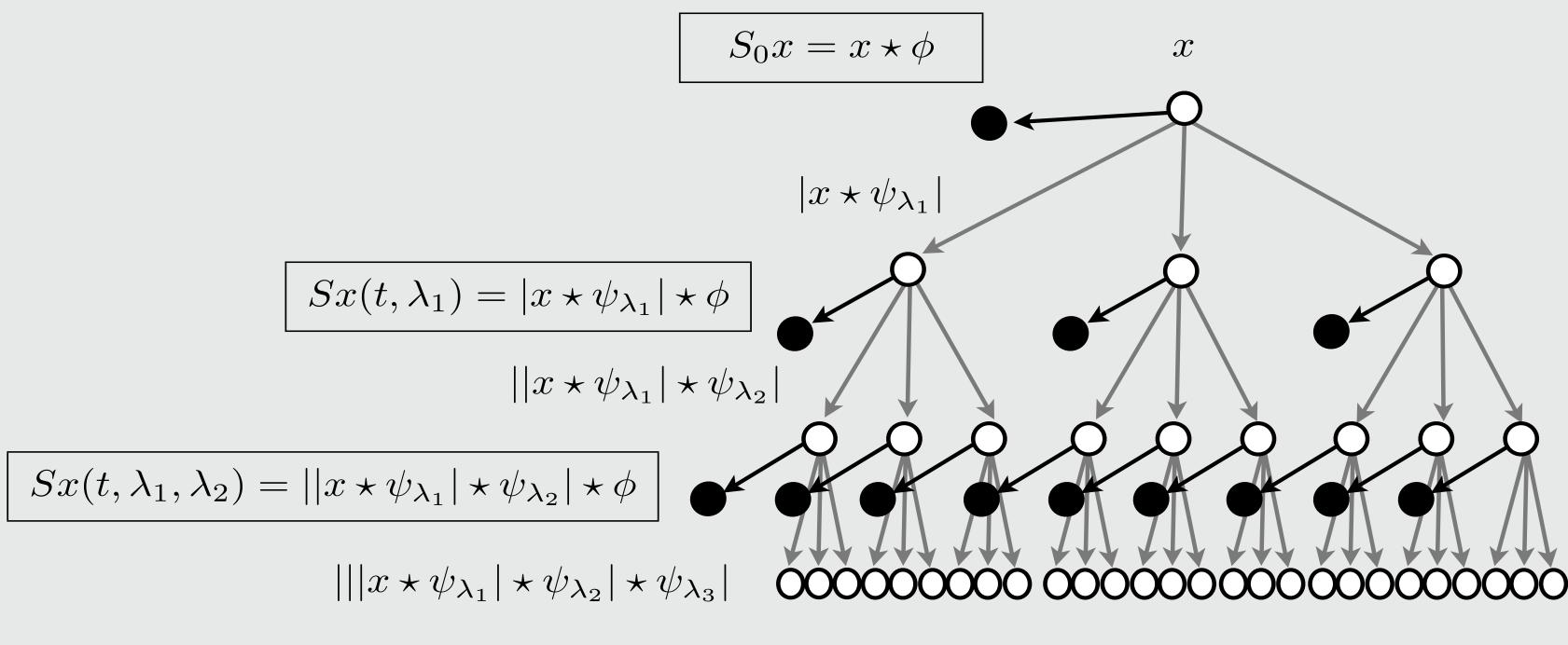
Ondelettes de Gabor en 2D



Les filtres de VGG16 sont sensibles à l'orientation On peut les remplacer par des ondelettes



Réseau de neurones convolutif à ondelettes Réseau diffusif (scattering network)



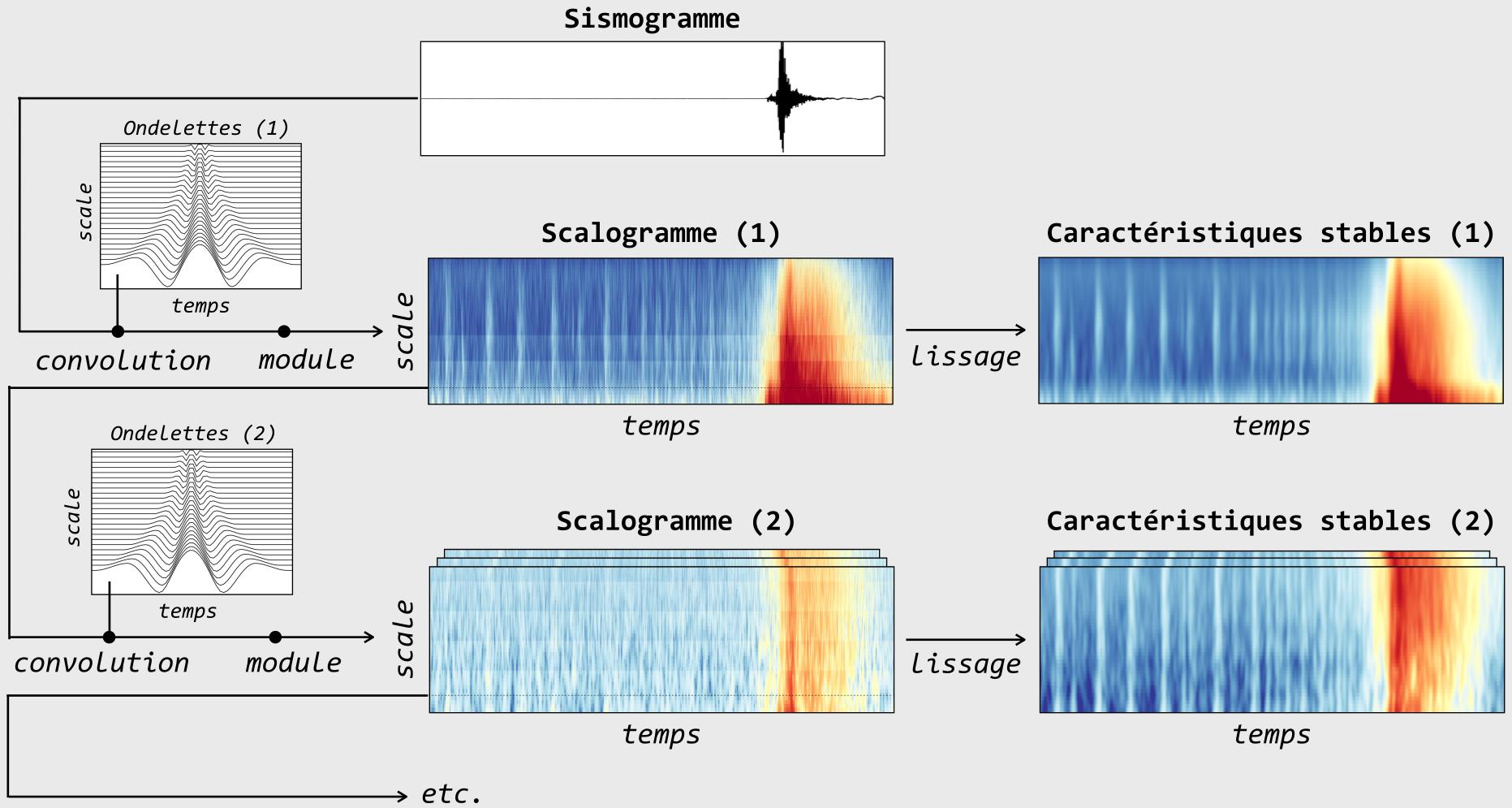
• Filtres analytiques

- Pas d'apprentissage
- Propriétés explicites
- Architecture intuitive

Andén & Mallat (2014)

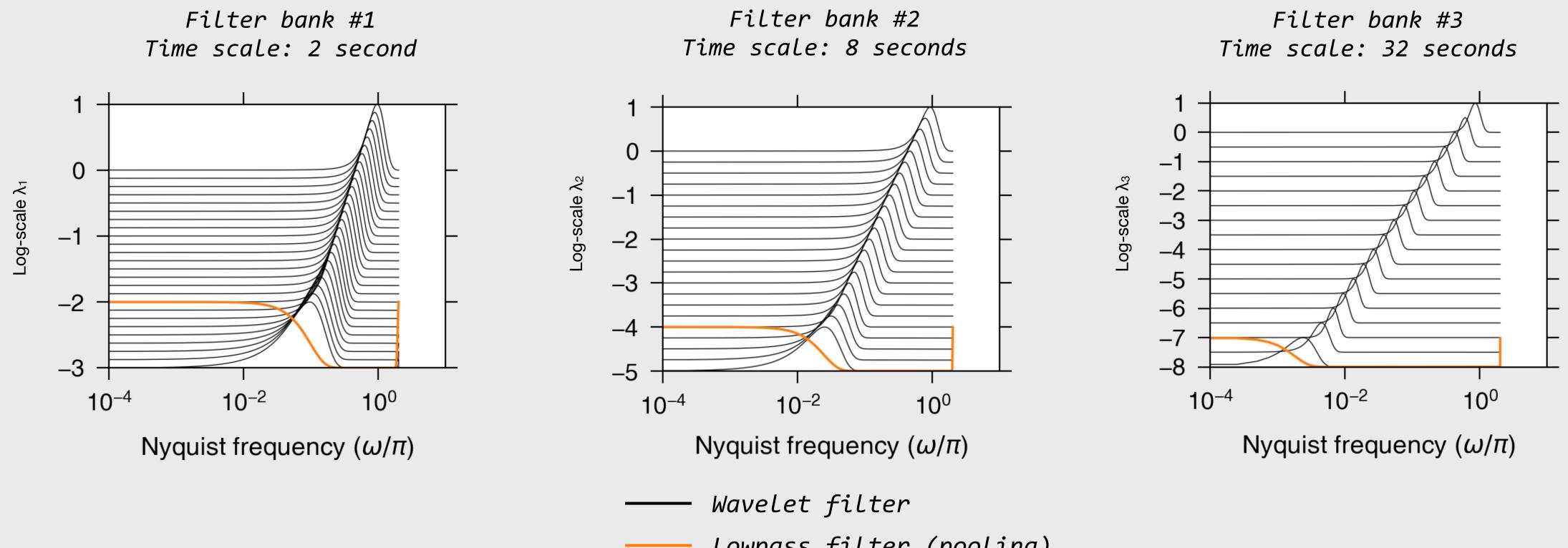
Excellent résultats sur la classification de signaux audio (Andén 2014), électrocardiongrammes & chants d'oiseaux (Balestriero 2017)

Représentation du signal à travel un réseau diffusif



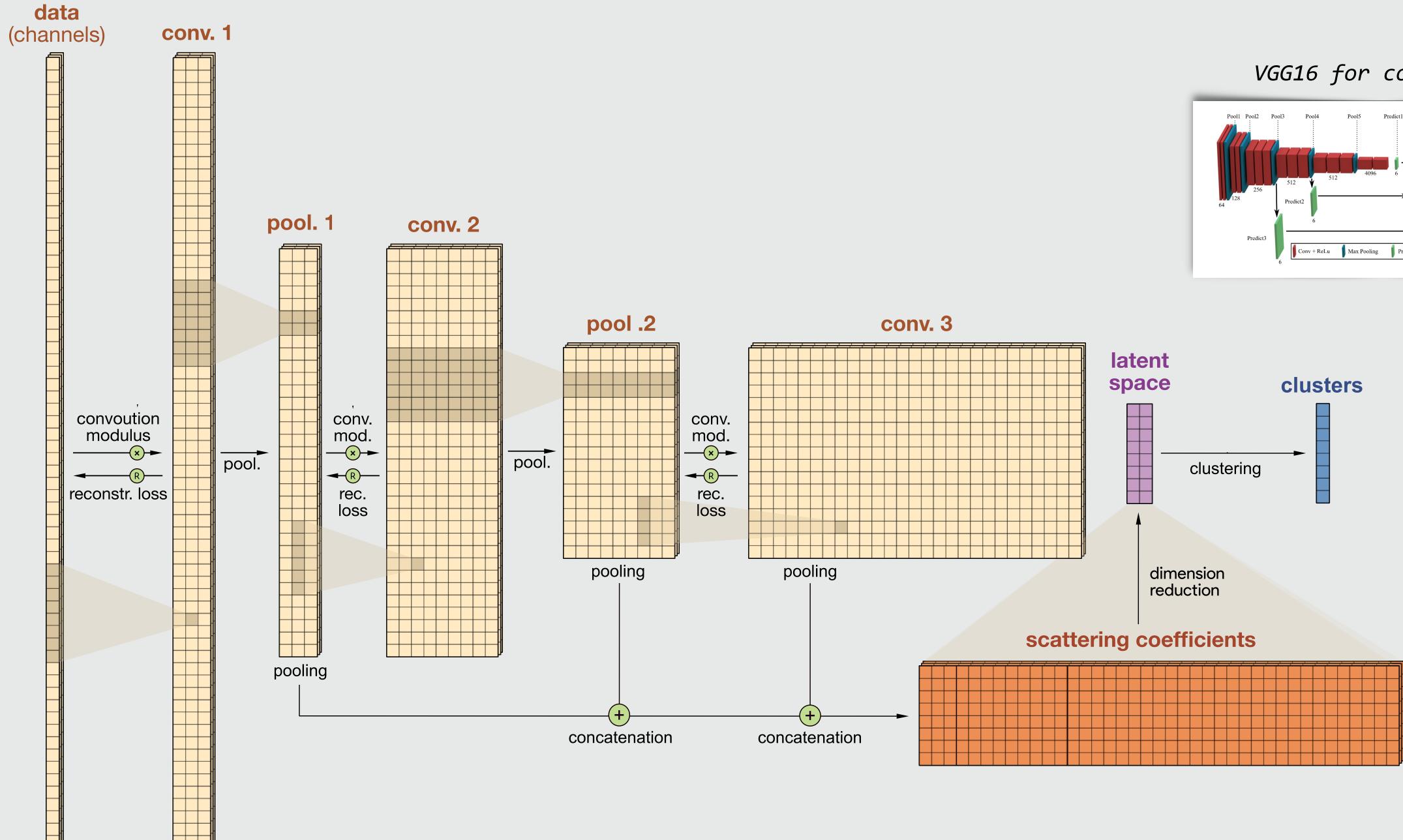
Extraction de caractéristiques stables à différentes échelles de temps et de fréquence

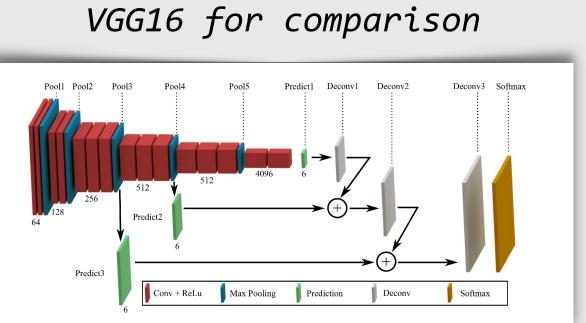
Architecture du réseau diffusif



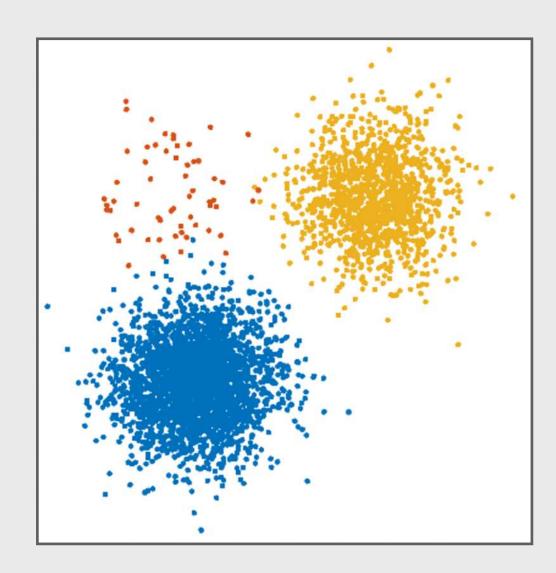
Échelle de temps

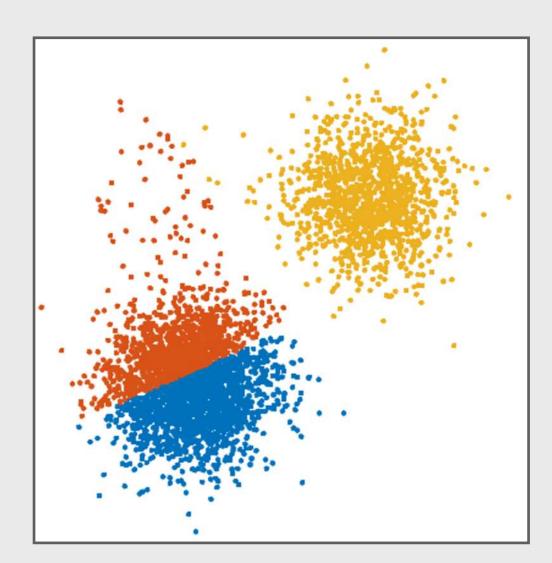
Lowpass filter (pooling)





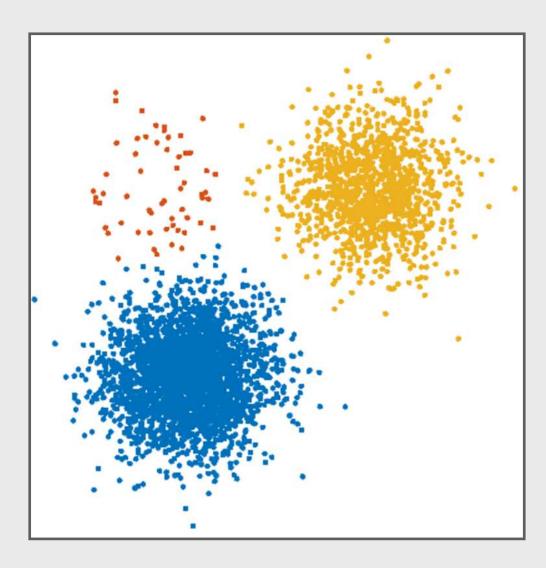
Identification de familles avec un modèle de mélange gaussien





(a) generated synthetic data from 3 normal processes with unbalanced covariance and population size

GMM peut identifier des familles avec des populations déséquilibrées



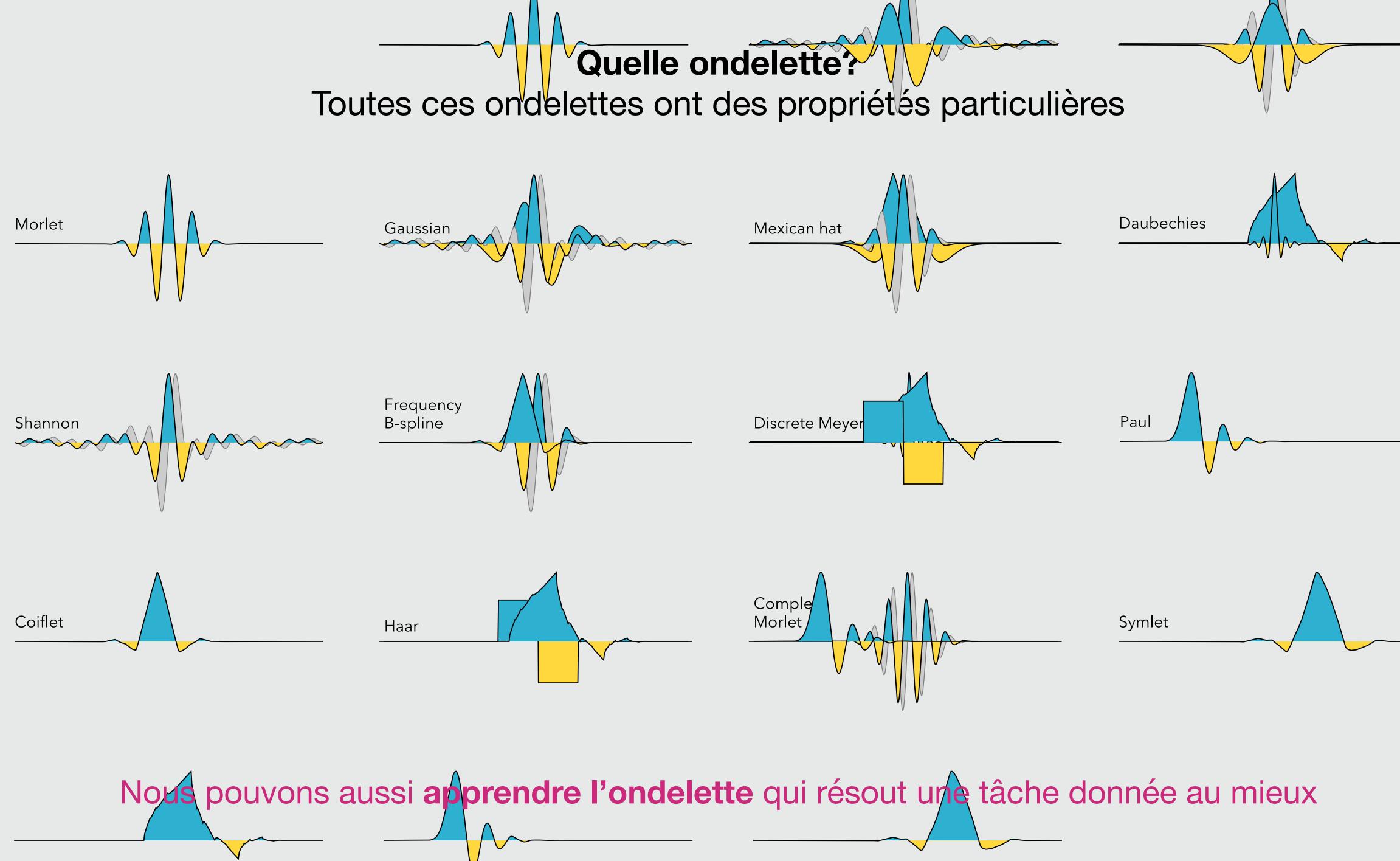
modified from Raykov et al. PONE (2016)

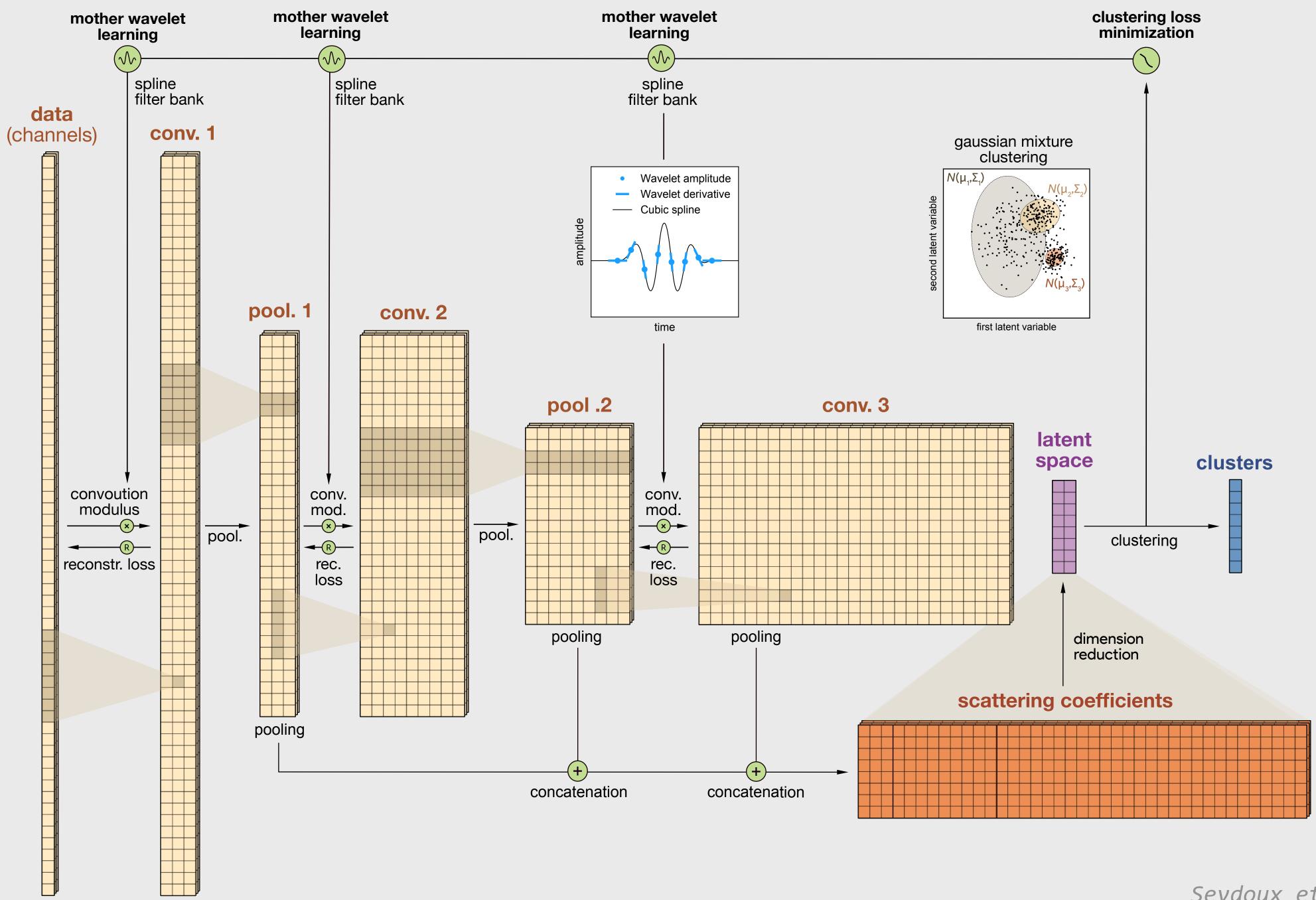
(b) K-means

(c) GMM, a soft probabilistic version of K-mean

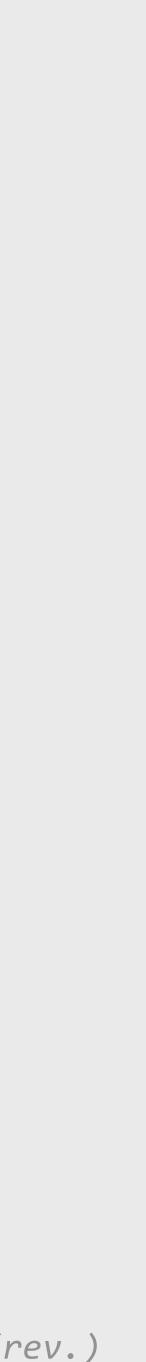
$$x \sim \prod_{k=1}^{K} \mathcal{N}(\mu_k, \Sigma_k) \mathbf{1}_{\{t=k\}}$$



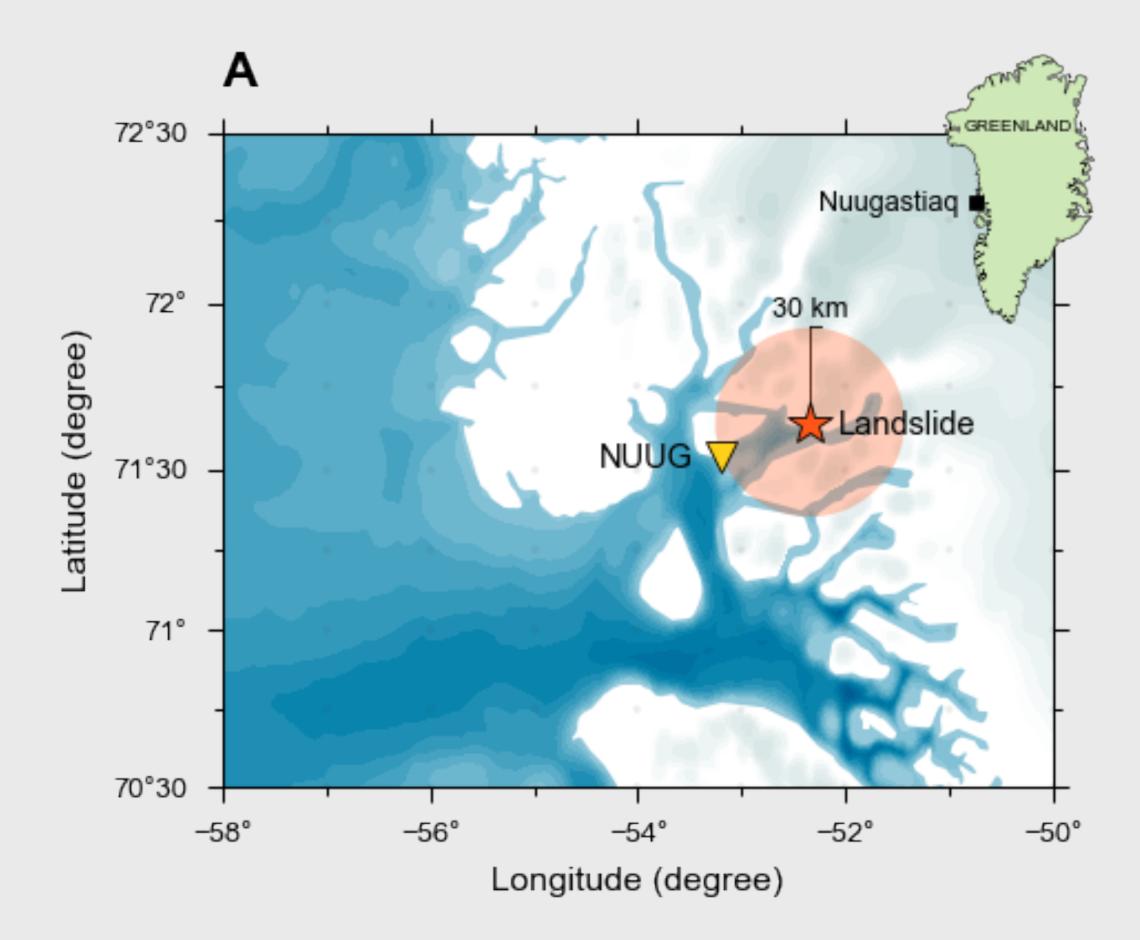


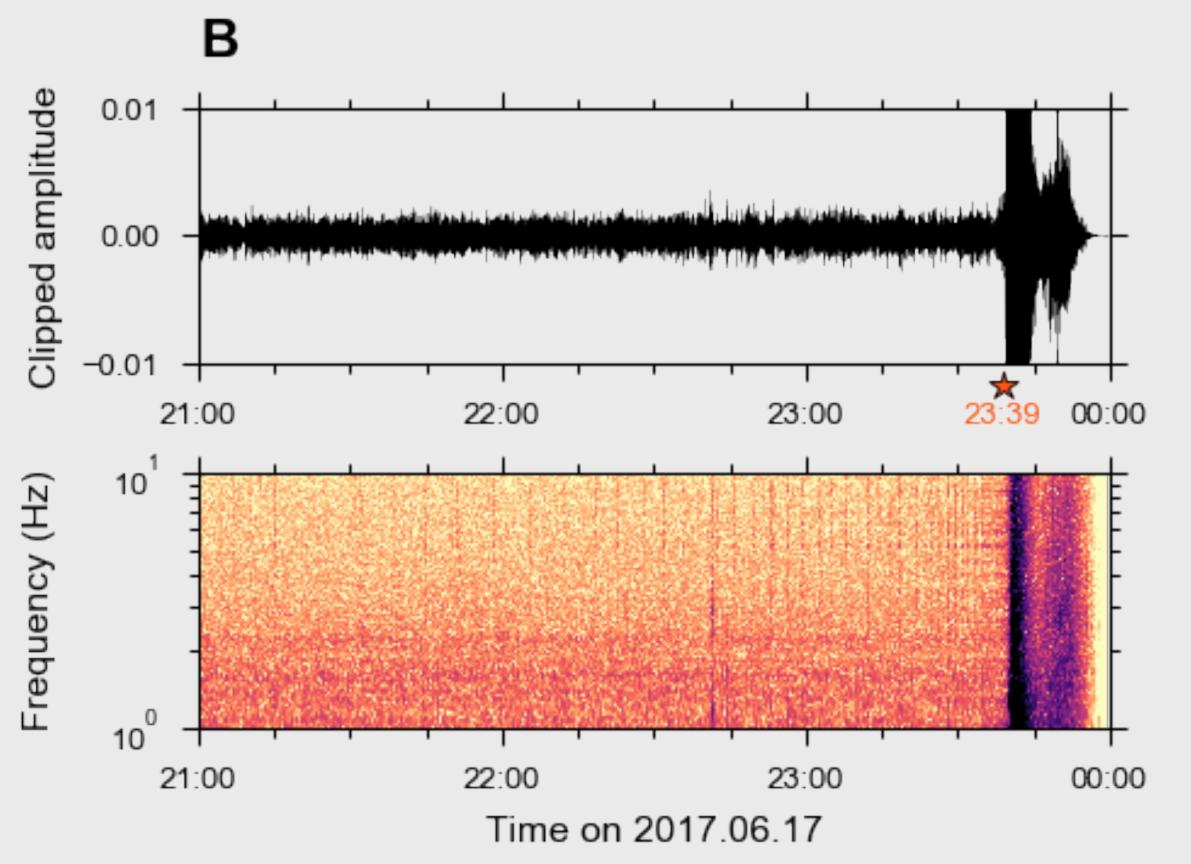


Seydoux et al. (rev.)

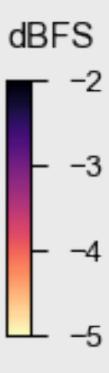


Glissement de terrain de Nuugaastiaq (2017) – faible précurseur sismique?

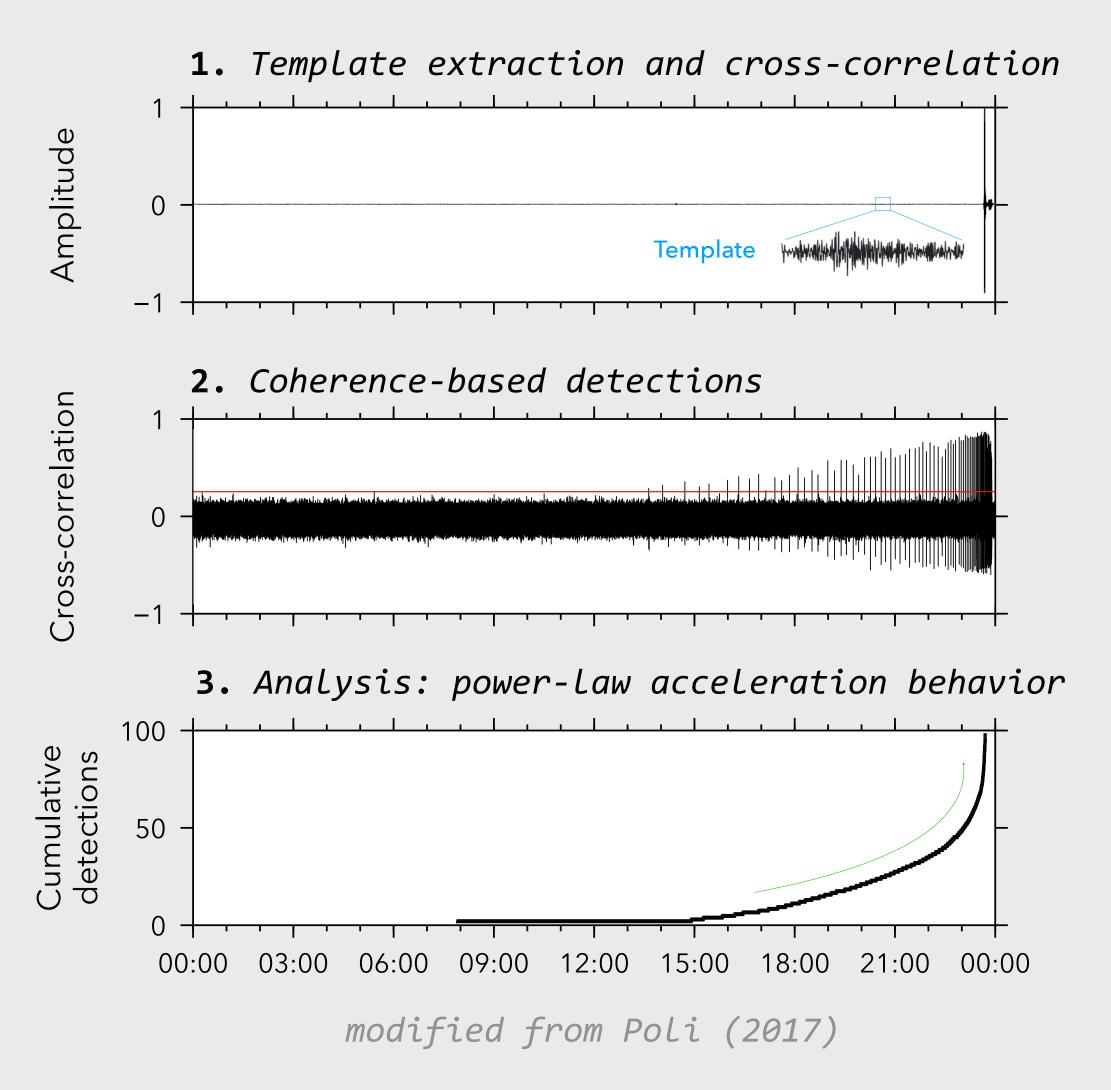




Seydoux et al. (rev.)



Glissement de terrain de Nuugaastiaq (2017) – faible précurseur sismique? Mise en évidence par template matching



Les avantages

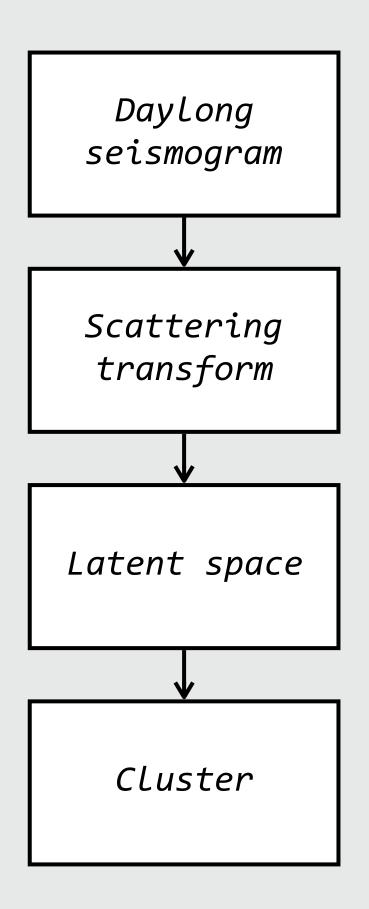
- Robuste au bruit
- Rapide à calculer

Les inconvénients

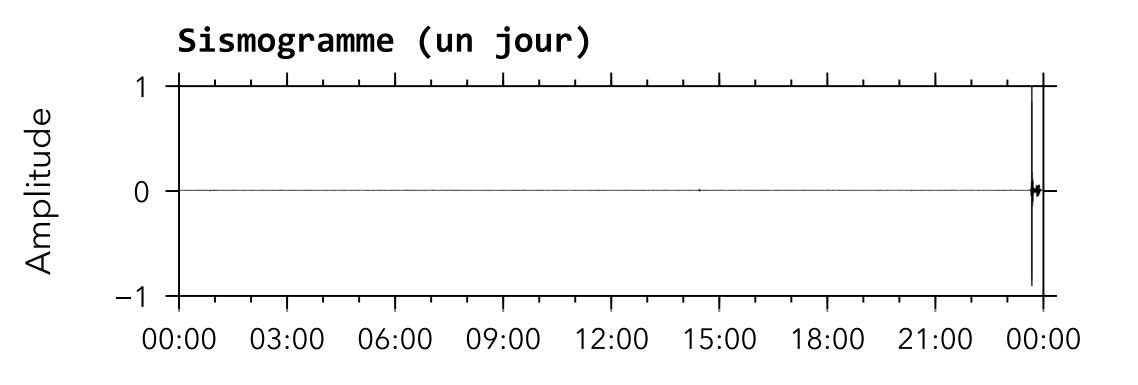
- Sensible à la définition du template
- Sensibles à plusieurs paramètres (fenêtre, fréquence)
- Limité à des signaux connus (classification à deux classes)

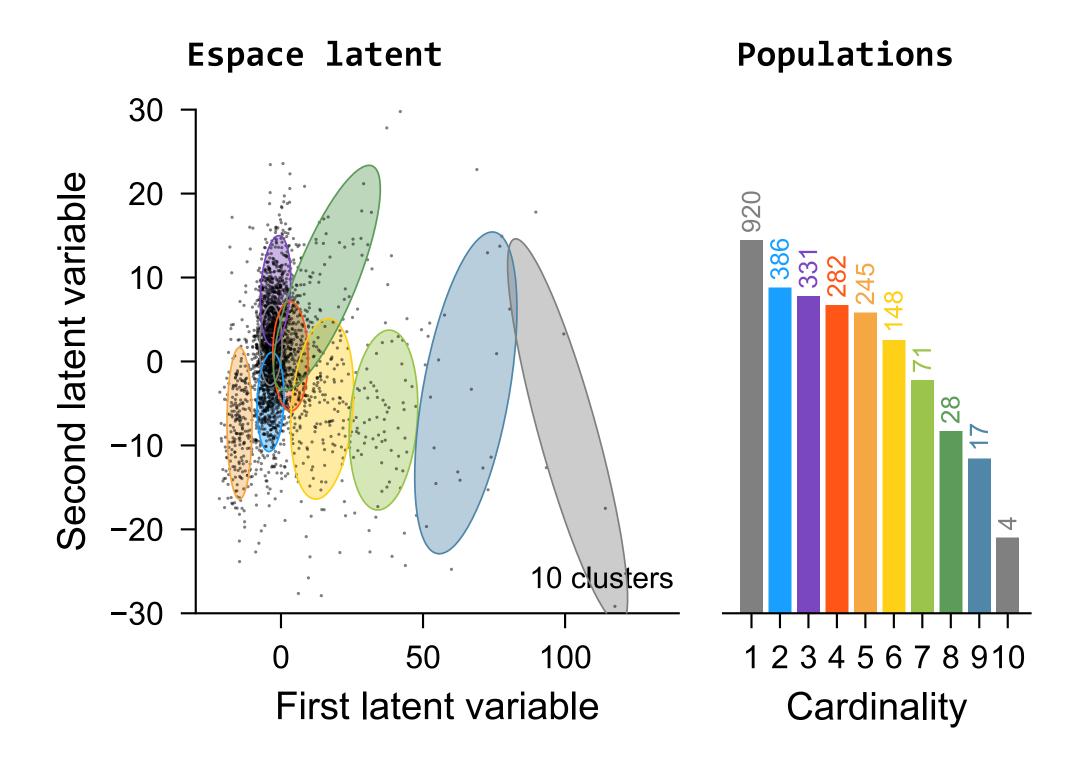
Peut-on retrouver ces résultats à l'aveugle?

Identification de signaux dans un jour de donnée



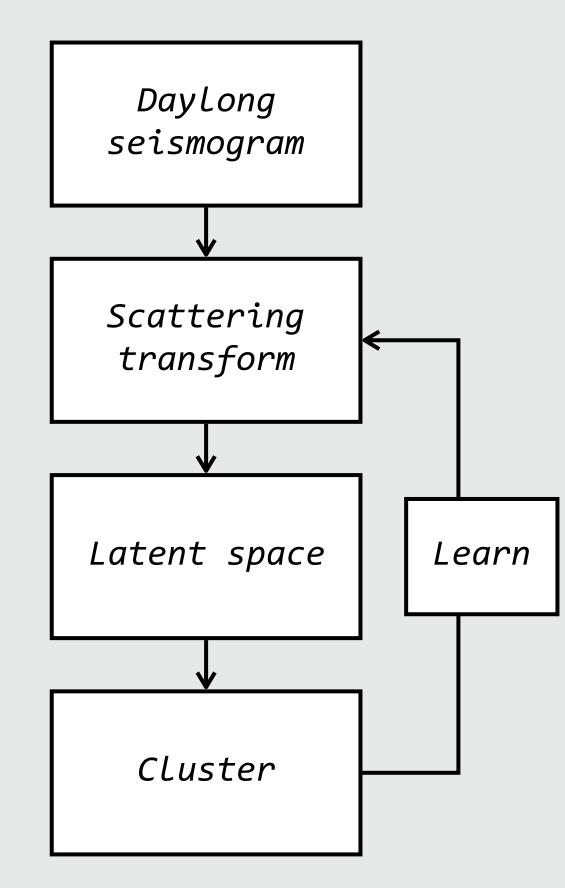
16

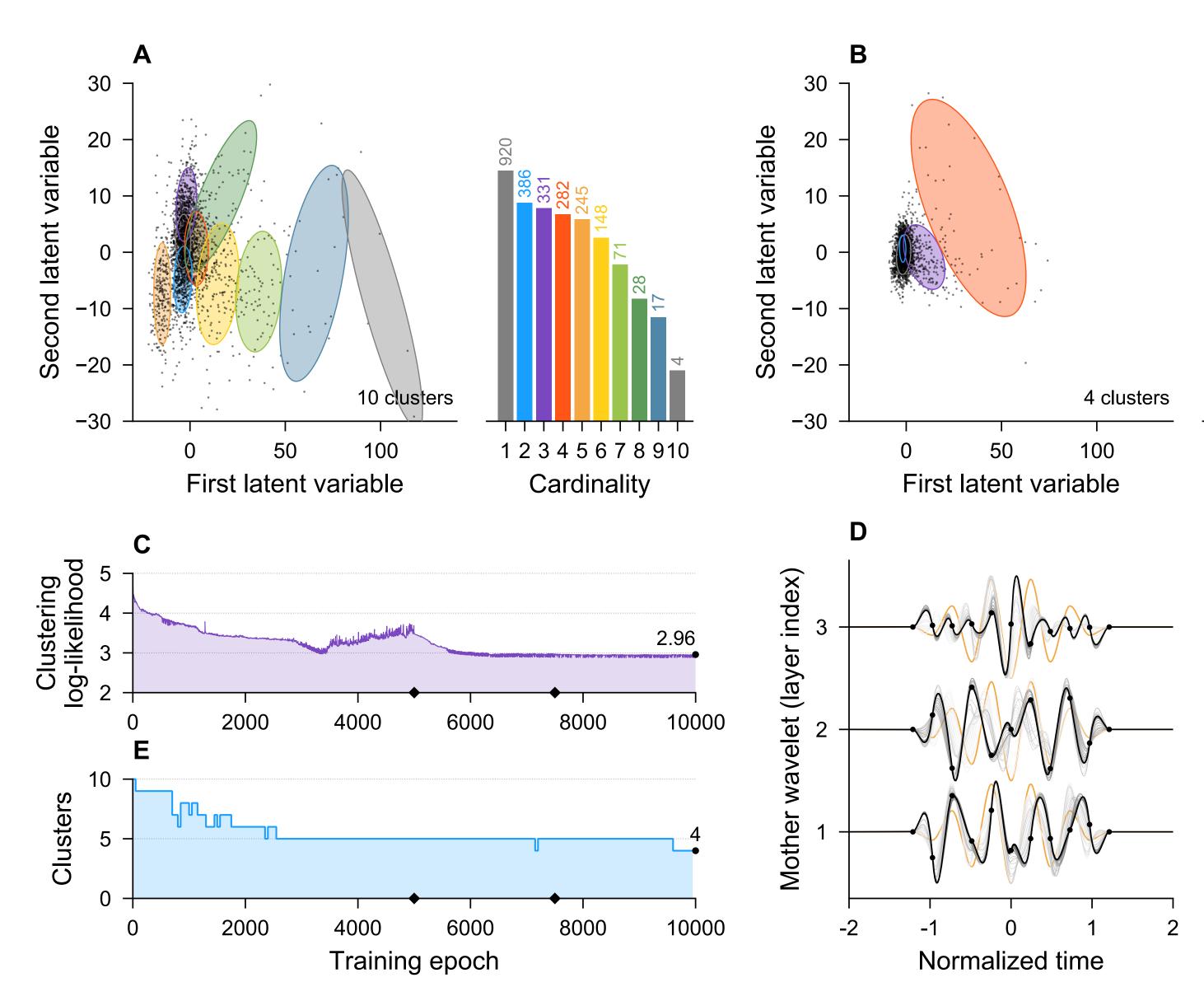




– beaucoup de clusters identifiés, données éparpillées

Identification de signaux dans un jour de donnée

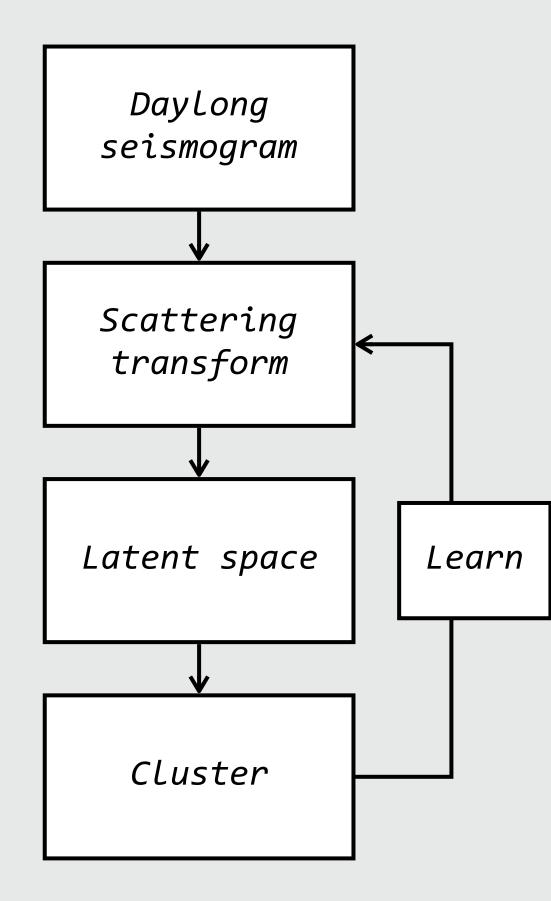


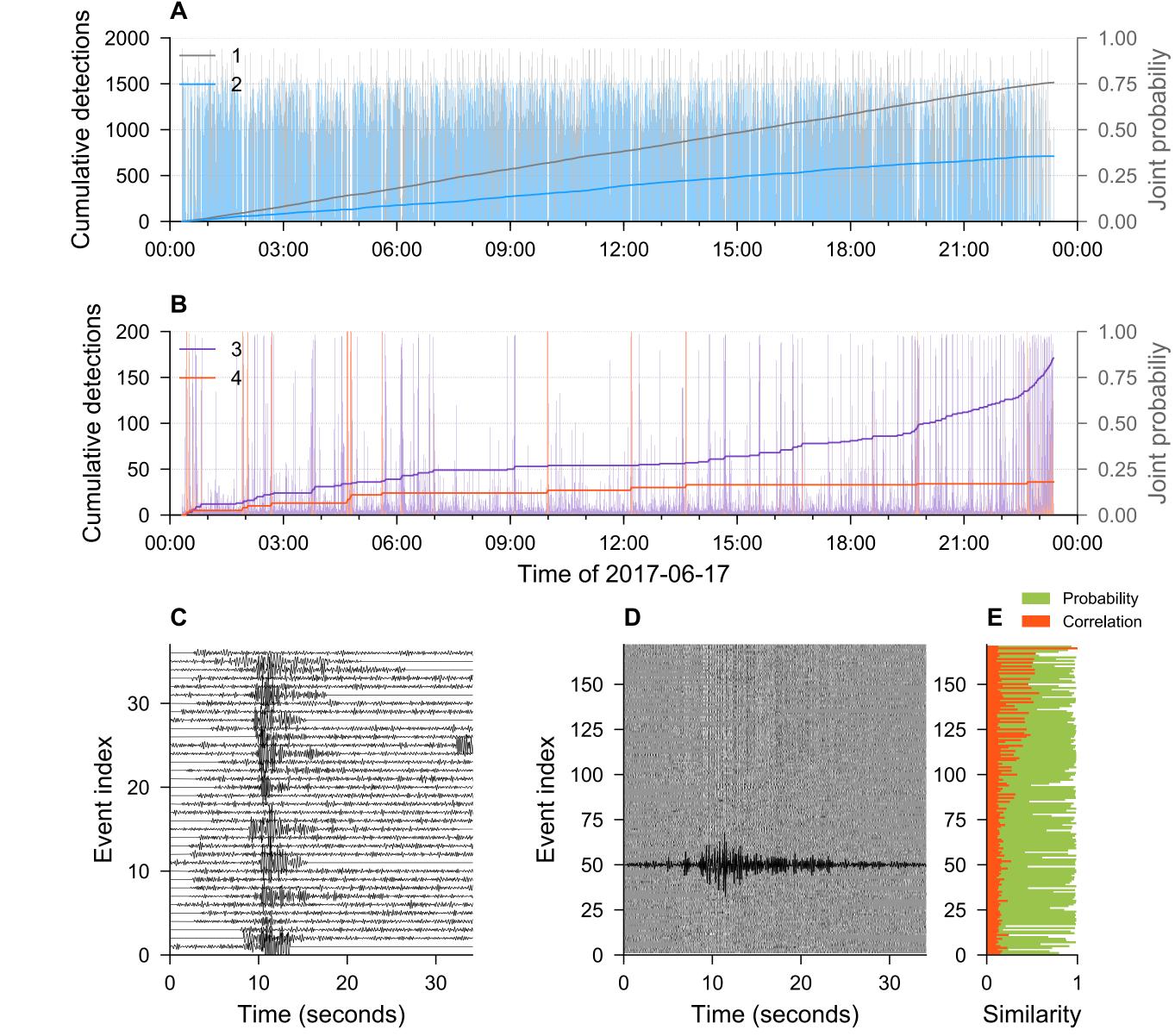


Après entrainement, certains points se concentrent, d'autres non

Seydoux et al. (rev.)

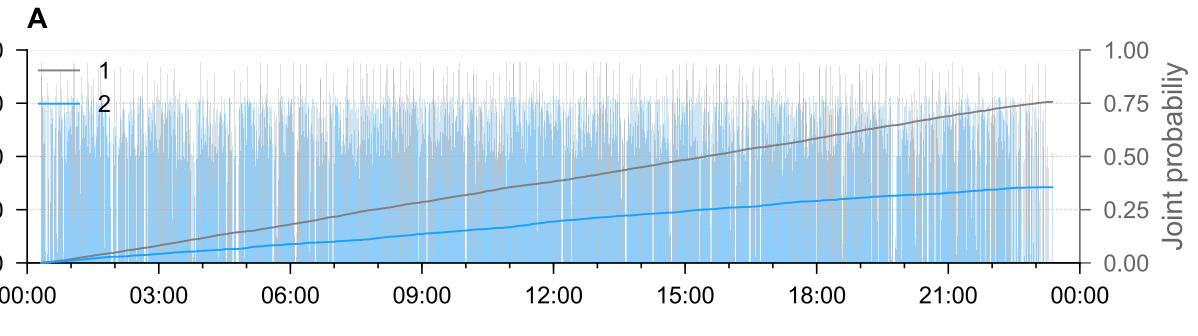
Identification de signaux dans un jour de donnée



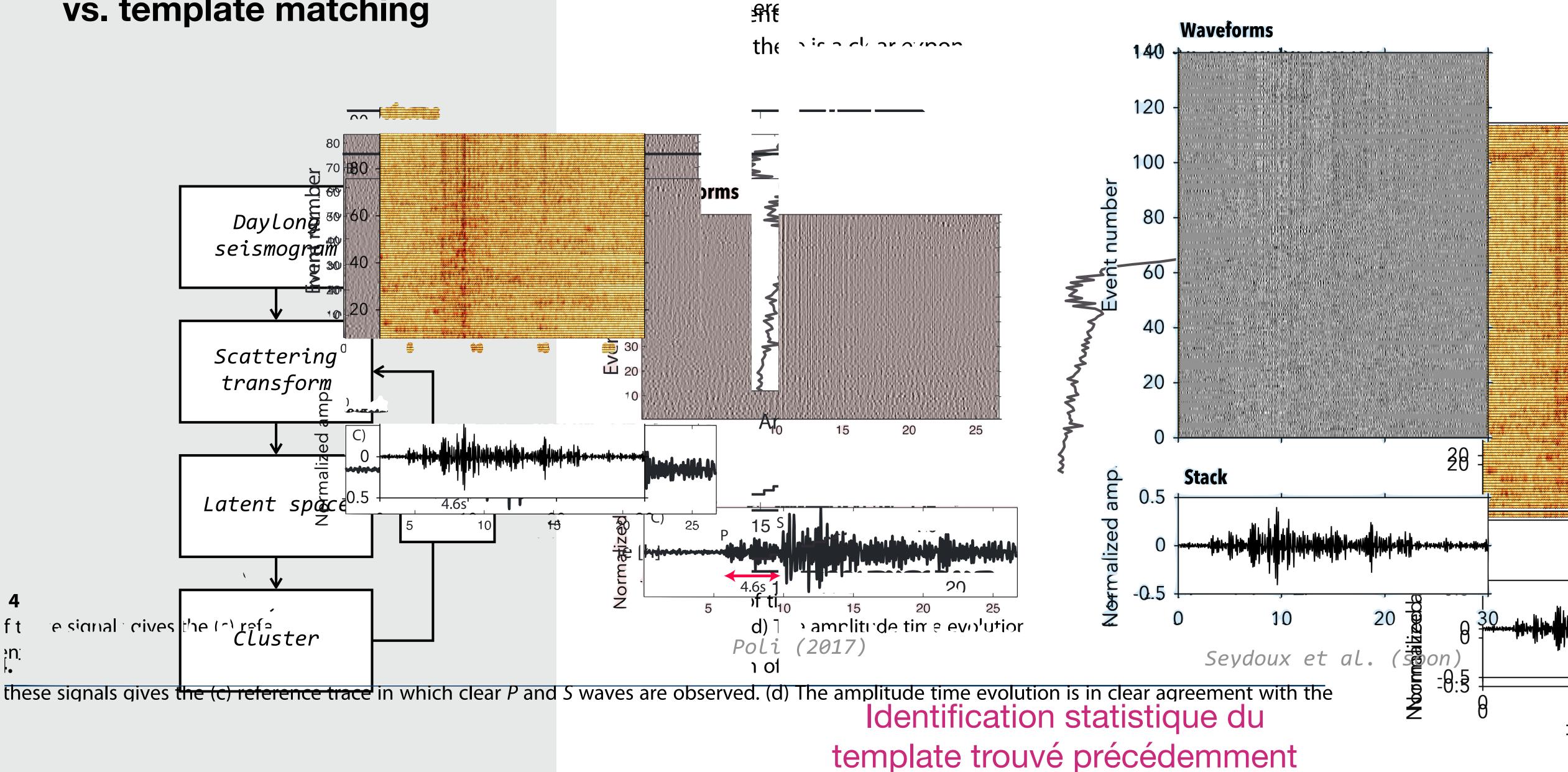


Détection cumulatives de chaque familles & formes d'ondes

Seydoux et al. (rev.)



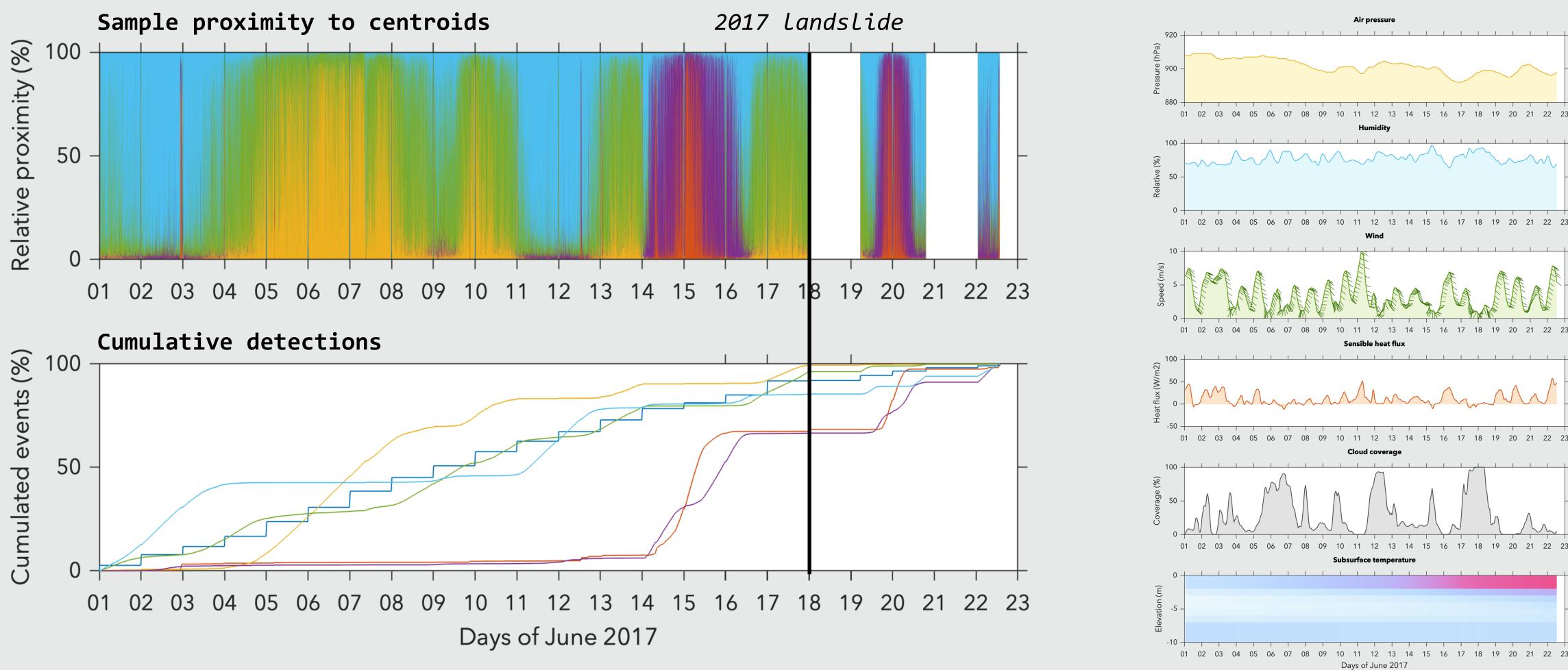
vs. template matching



f t

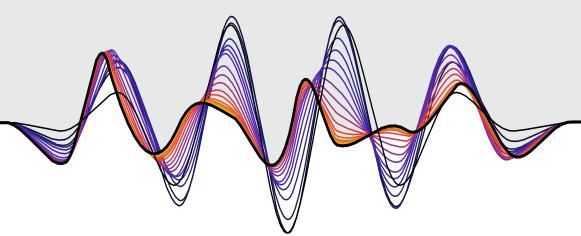
Figure Add haw the kumula tive our soles had even that the time site frequences the presence of the presence o

Discussion – classification du bruit à de plus grandes échelles



On ne voit plus la (rare) sismicité, mais des structures relativement stables dans le bruit.

Conclusions

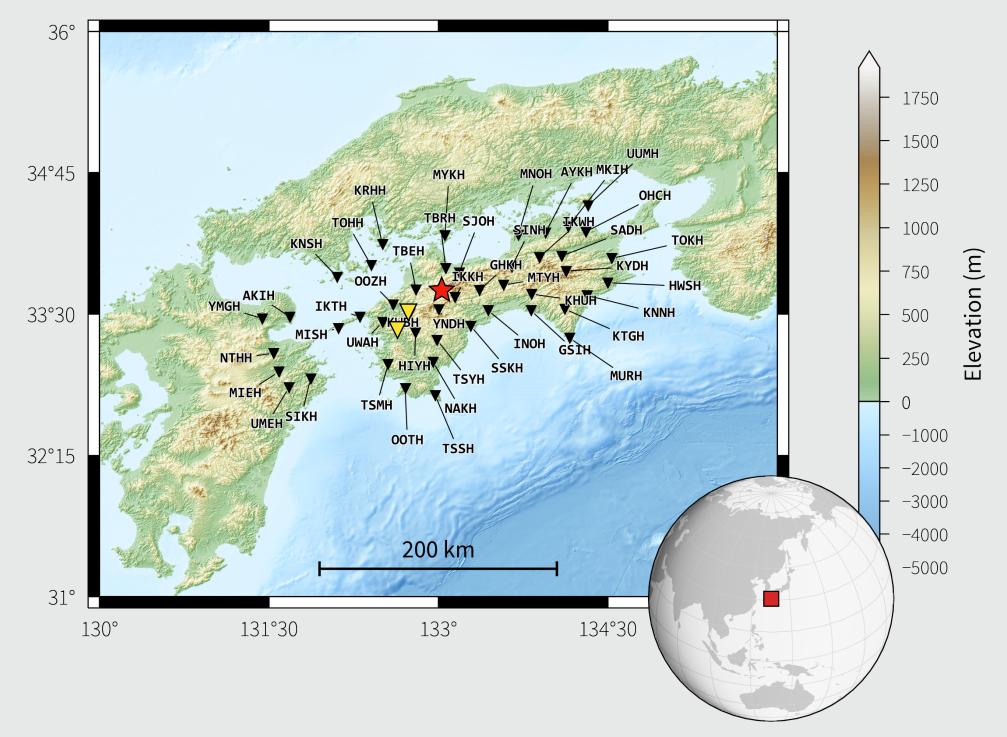


- Scattering network is used as a stable multiple time-scale representation of the seismic data
- PCA and GMM are used to **cluster** the seismic data in a two-dimensional space
- We learn the wavelet that minimizes the clustering loss (representation learning)
 - We were able to **blindly recover the precursory repeater** preceding the main landslide rupture

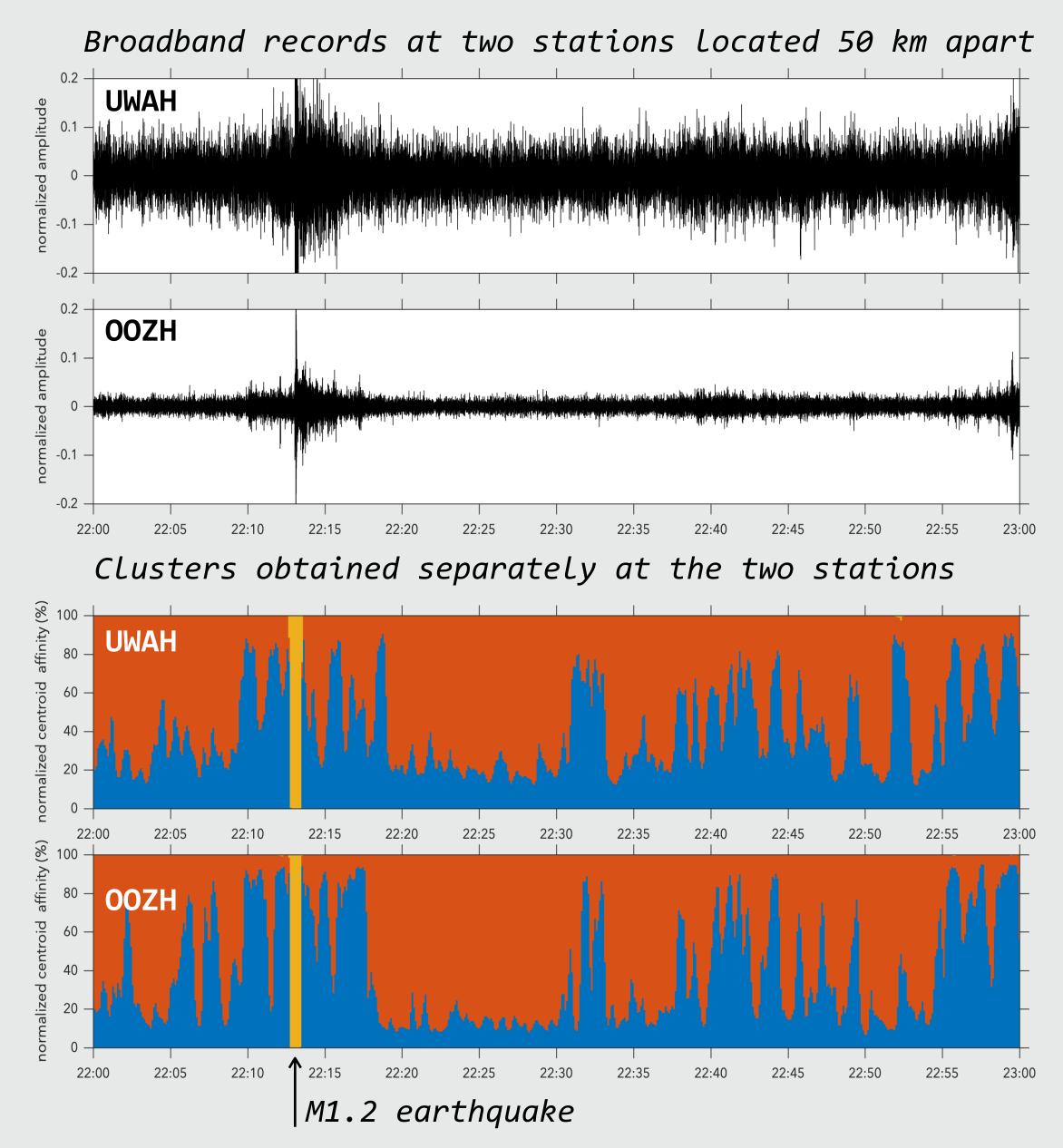
Annexes

Discussion – towards single-station detection of non-volcanic tremors

Japan hi-net



Two continuous records independently analyzed lead to the same clusters

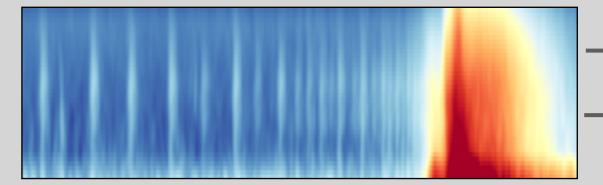


Discussion – clusters versus meteorological data

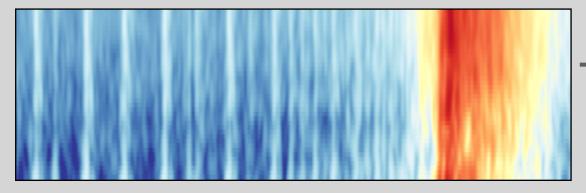
Appendix – parental normalization of the scattering coefficients

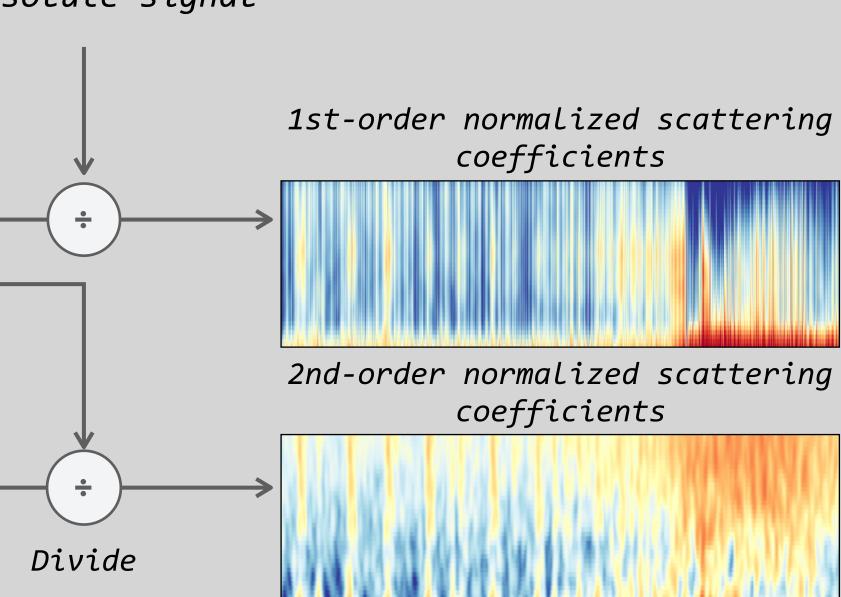
1st-order scat. coeff. of absolute signal

1st-order scattering coefficients



2nd-order scattering coefficients



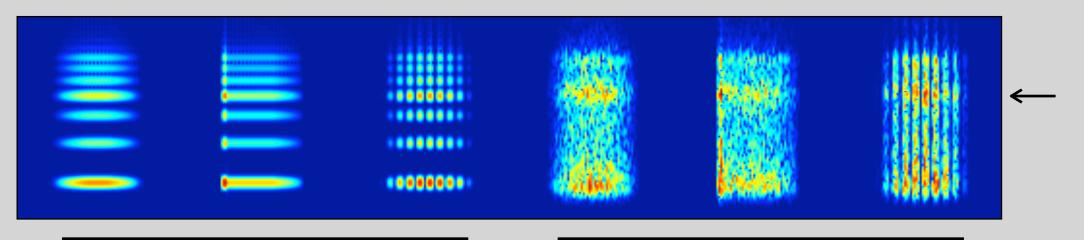


Several order of magnitude of amplitude difference between signals in the seismic data. We normalize the amplitude w.r.t. the parent scattering coefficients.

Siffre et al. (2013)

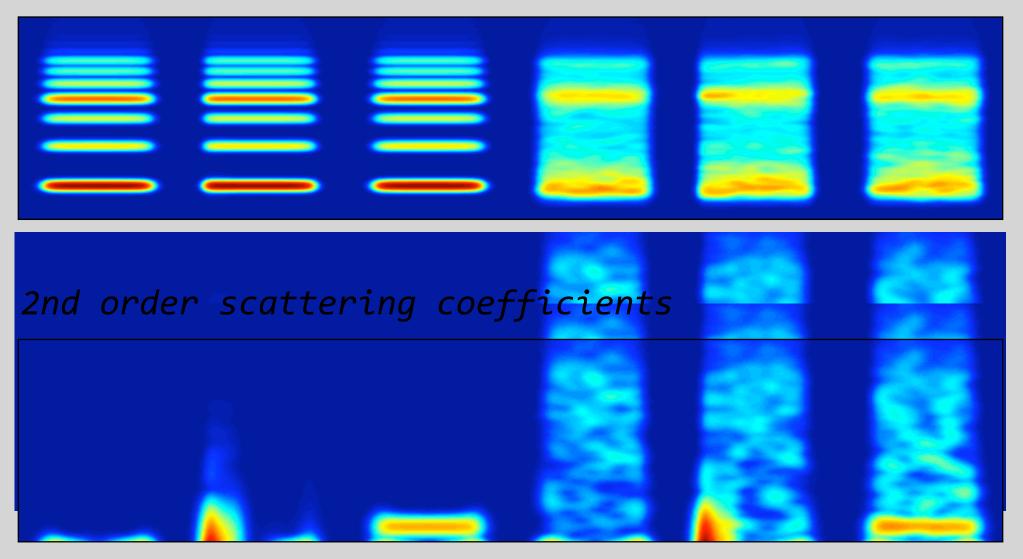
Toy example: a two-layer scattering network

Scalogram



Harmonic sources

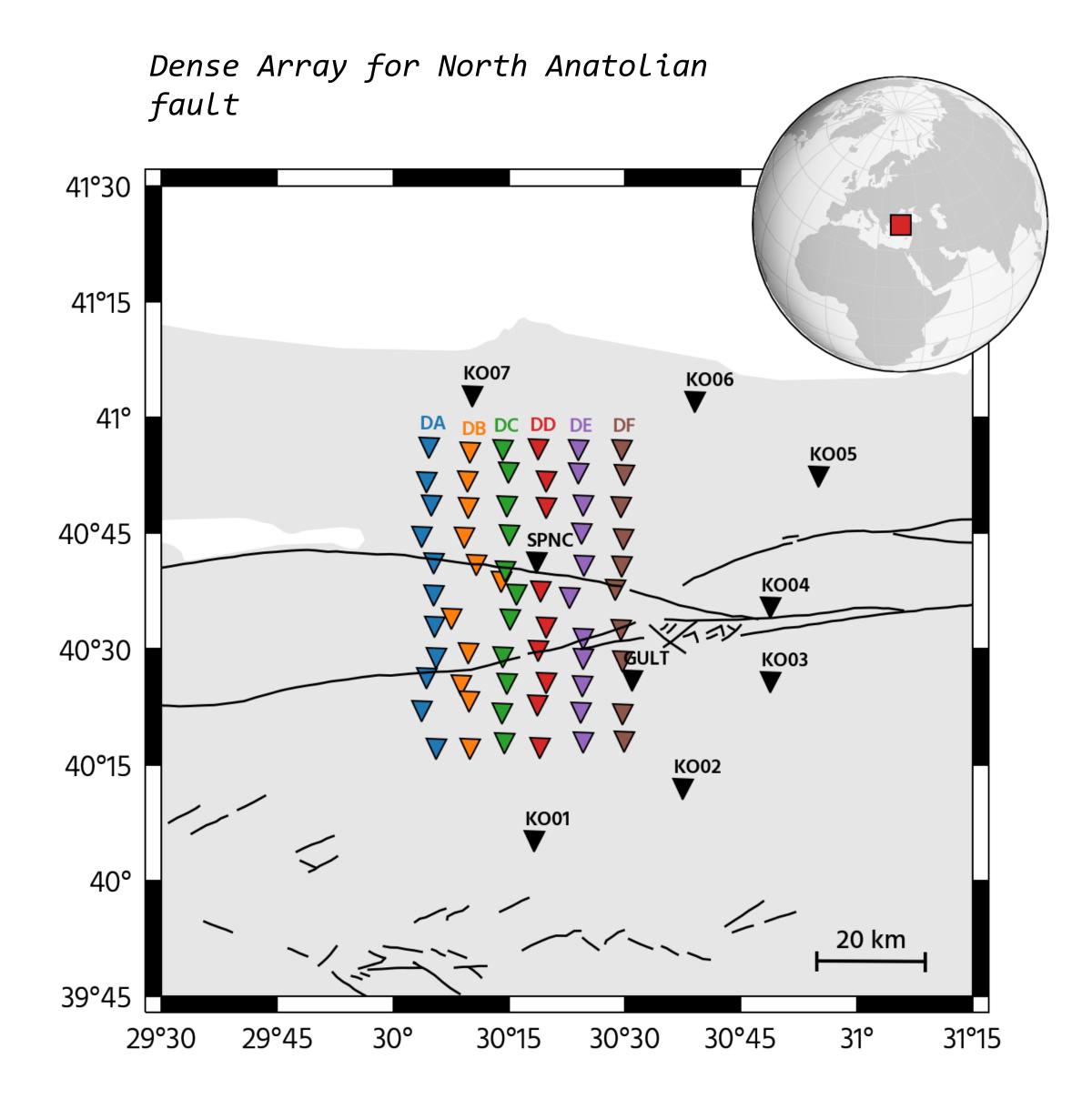
1st order scattering coefficients



Noise sources

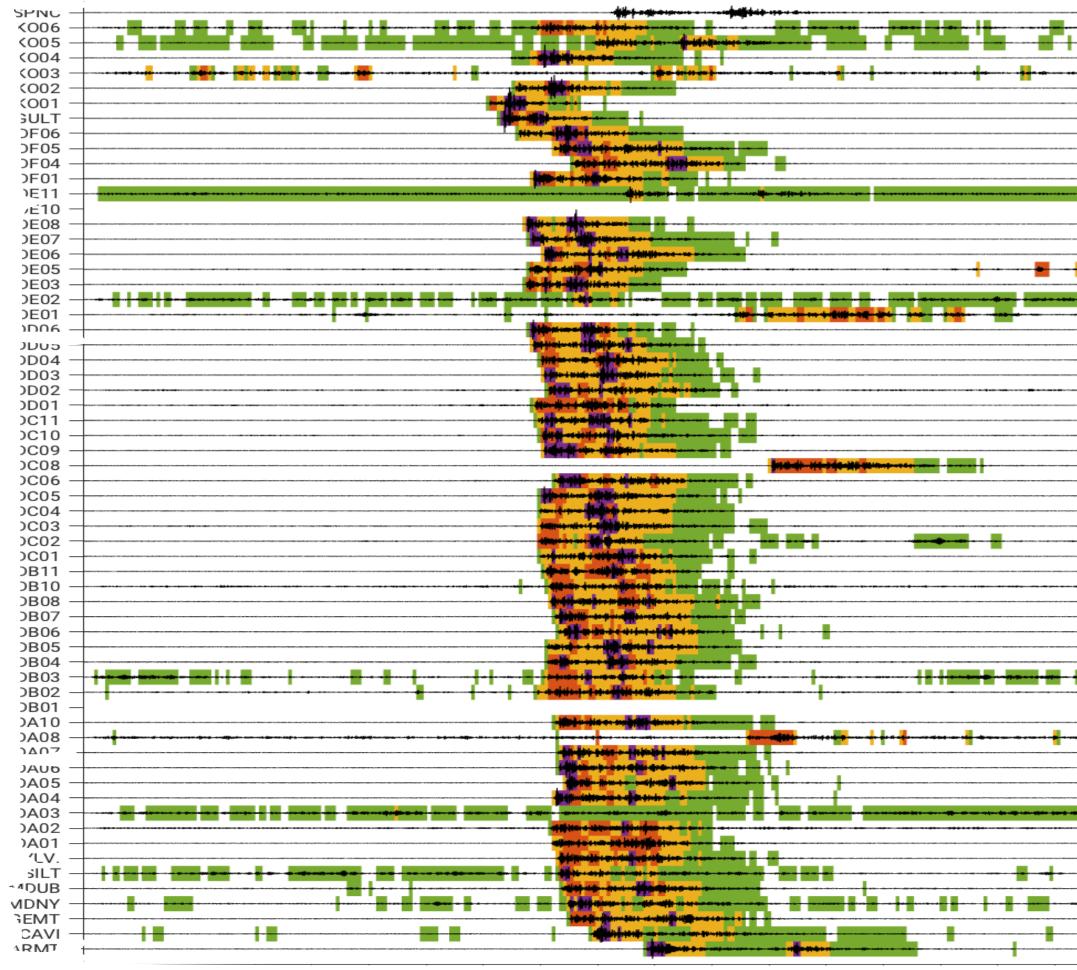
Anden & Mallat IEEE (2014)

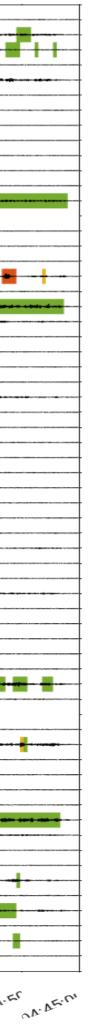
Ongoing work – differentiate between seismic phases

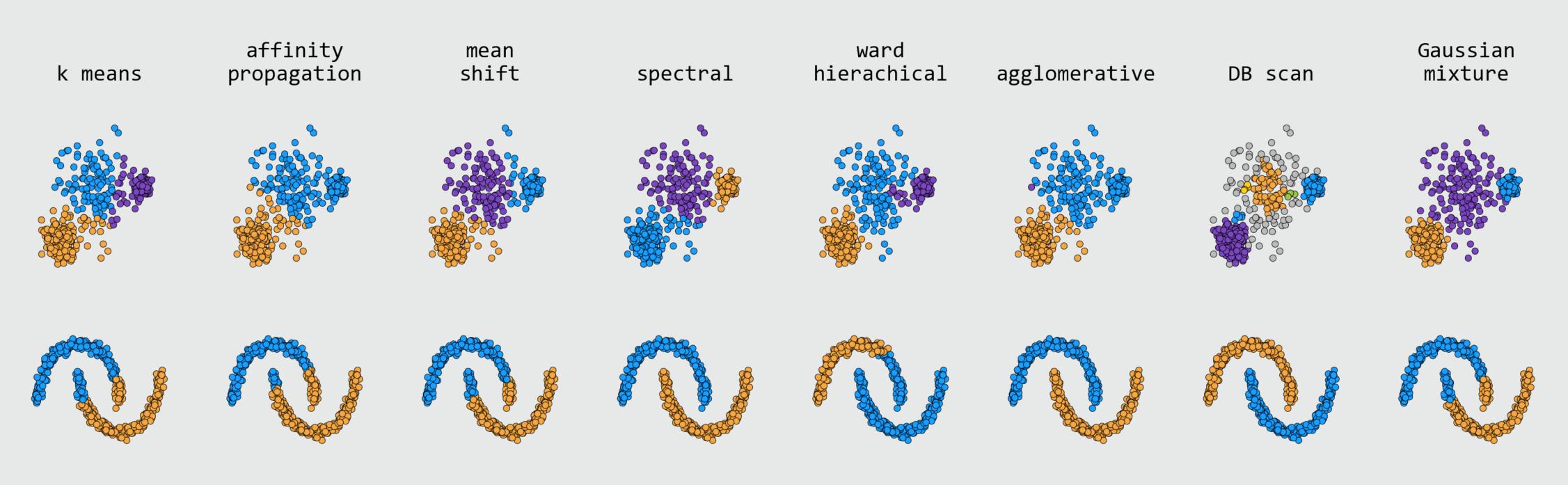


С

Analysis of a M1.6 earthquake





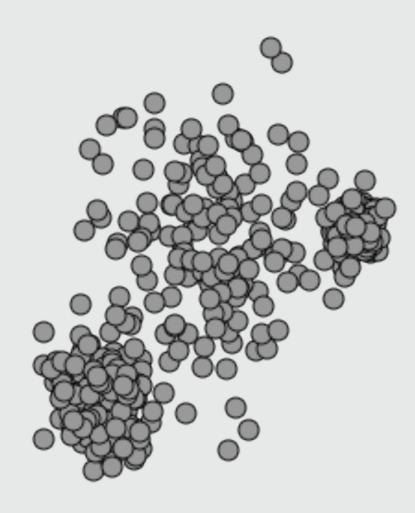


scikit-learn.org

Diversity of definition leads to variety of algorithms We need data experts to have a priori on the data in order to select the right algorithm

Cluster analysis – pick up the right one!

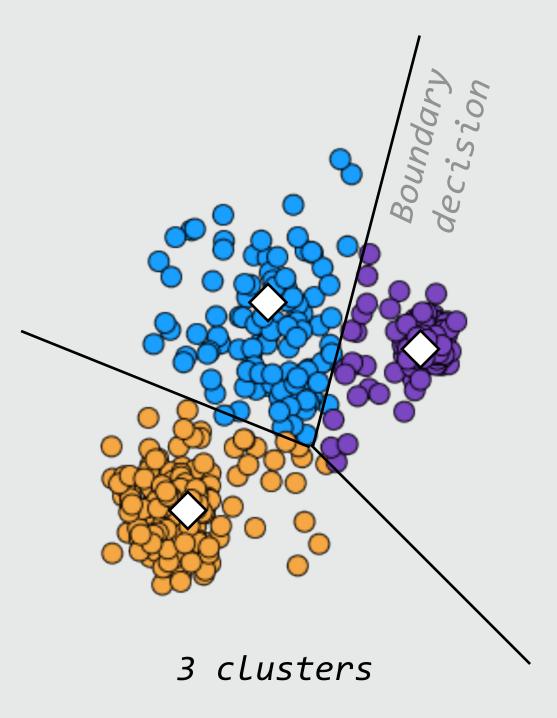
Cluster analysis – example of similarity-based clustering



k means
Find K clusters based
on Euclidian distance

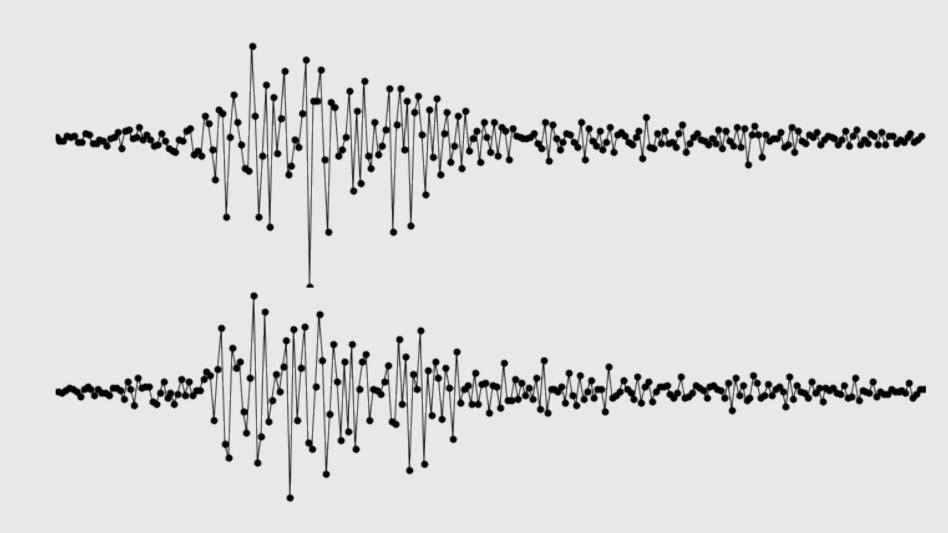
data points

Which algorithm is best suited for your dataset?



Waveform clustering

How can we consider waveform data?



N-points waveform
correlation: 32% !

We need to extract features that have some properties of invariance

A waveform is a point in a N dimensional space

Time-domain representation is highly unstable (sensitive to translation in time, amplitude, frequency, etc.)

Waveform clustering

General workflow

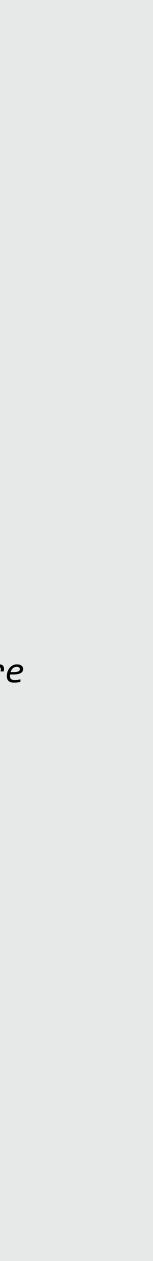
Which features have invariance properties?

Waveform $x \in \mathbb{R}^N$

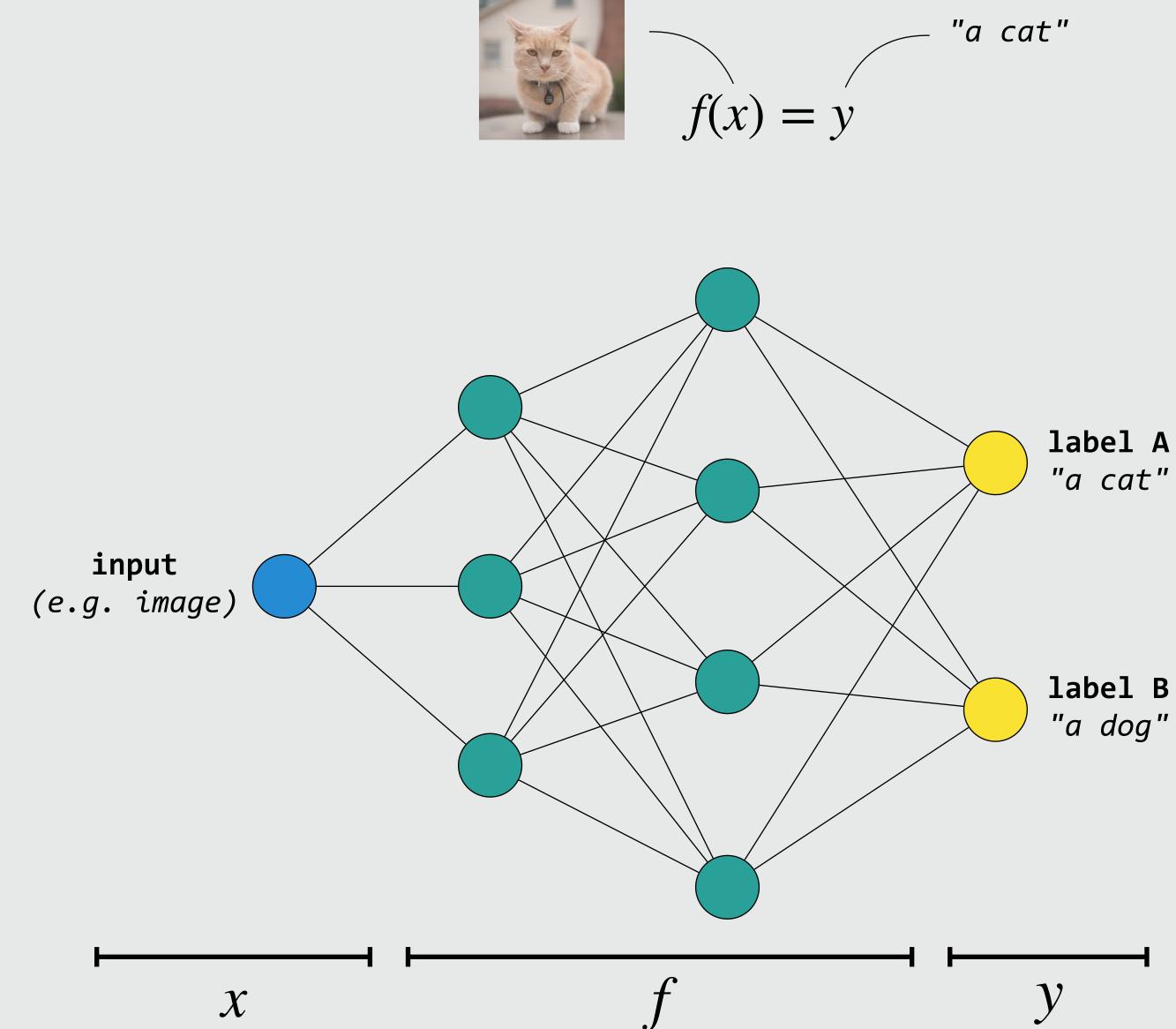
Dependent to: Translation in time Deformation (scattering) Frequency content Not suited for clustering

Find groups based on similarity in the feature similarity

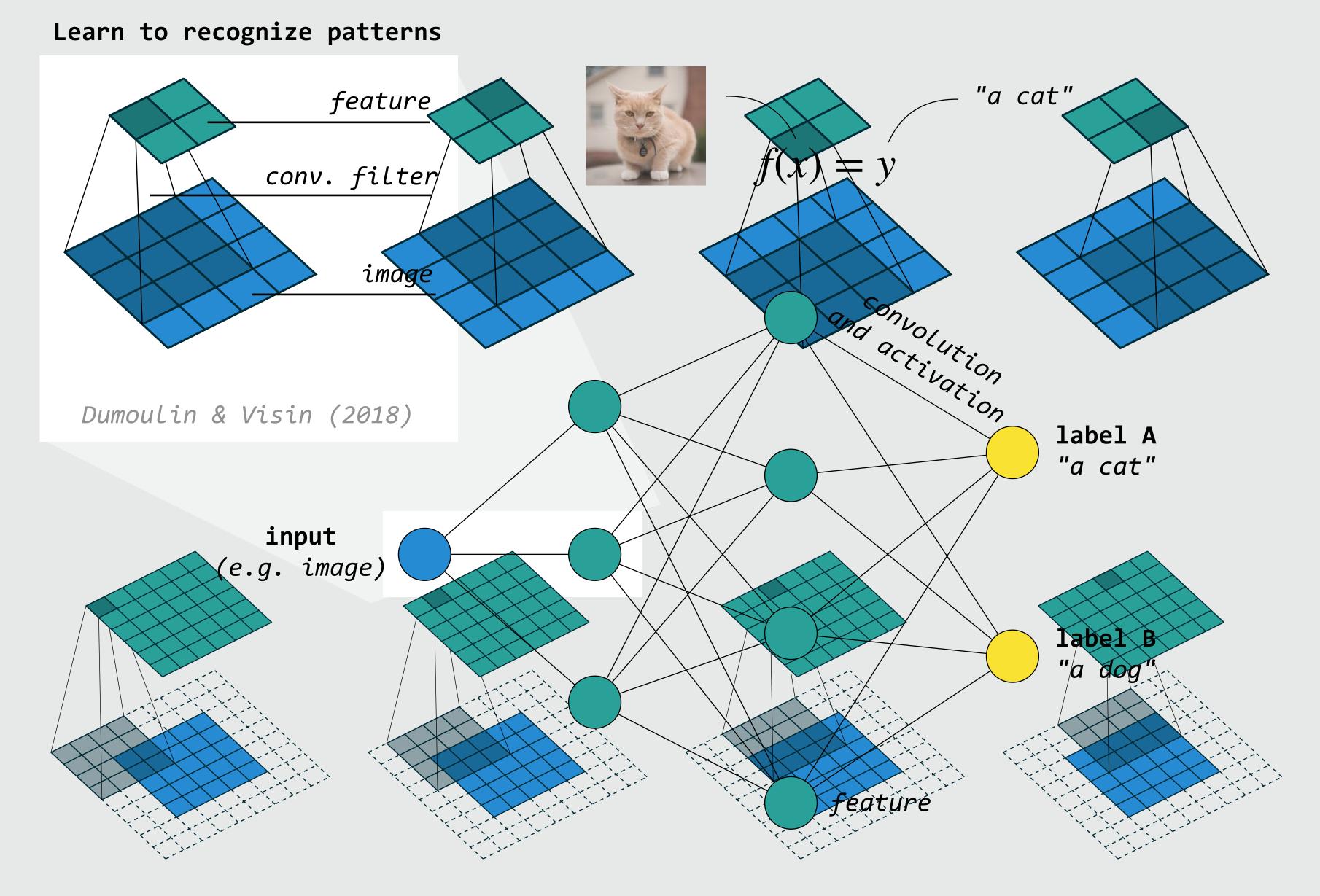
How do we select the right *features*?

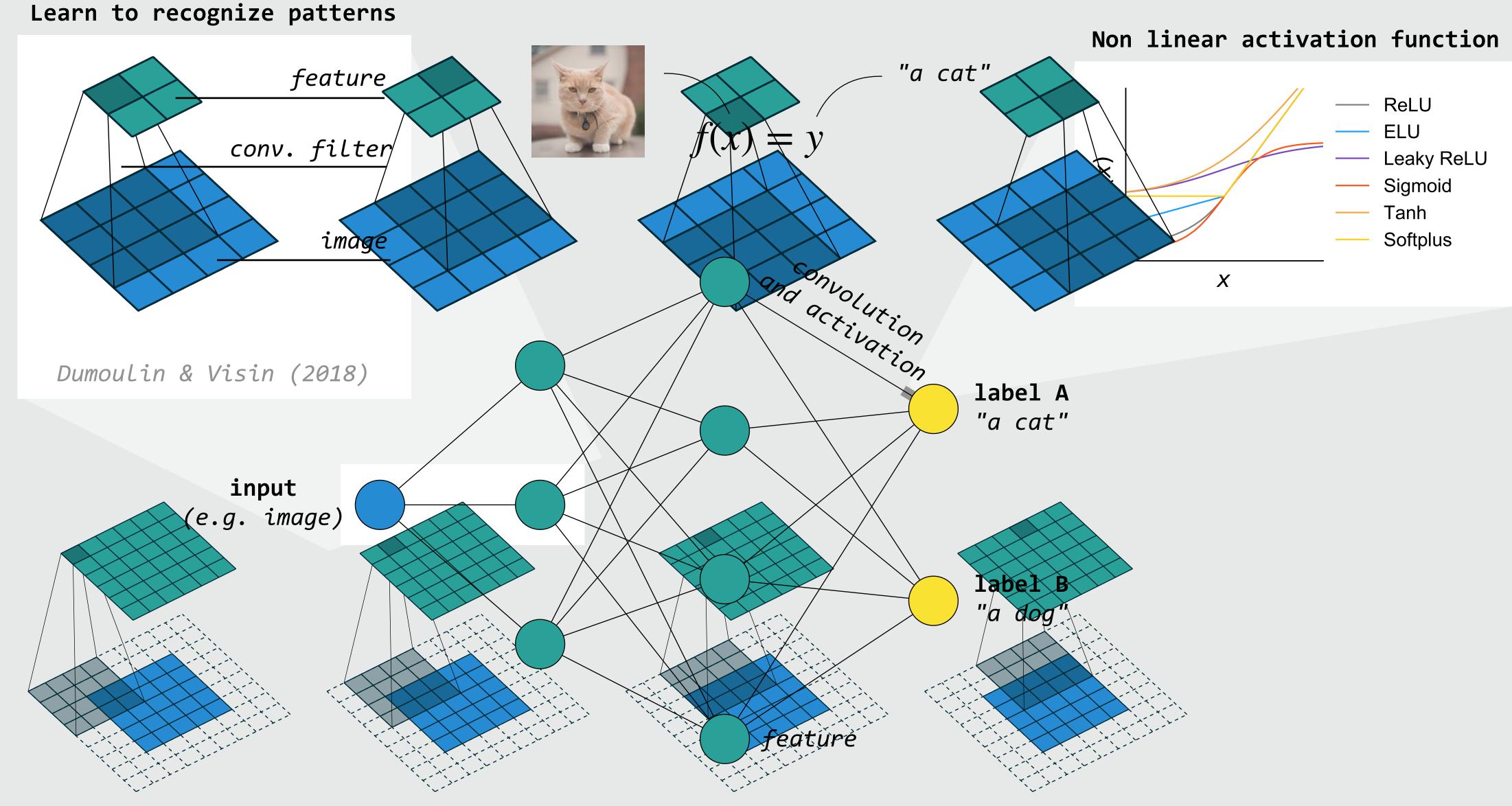


 $\int_{f(x)=y} f(x) = y$ "a cat"

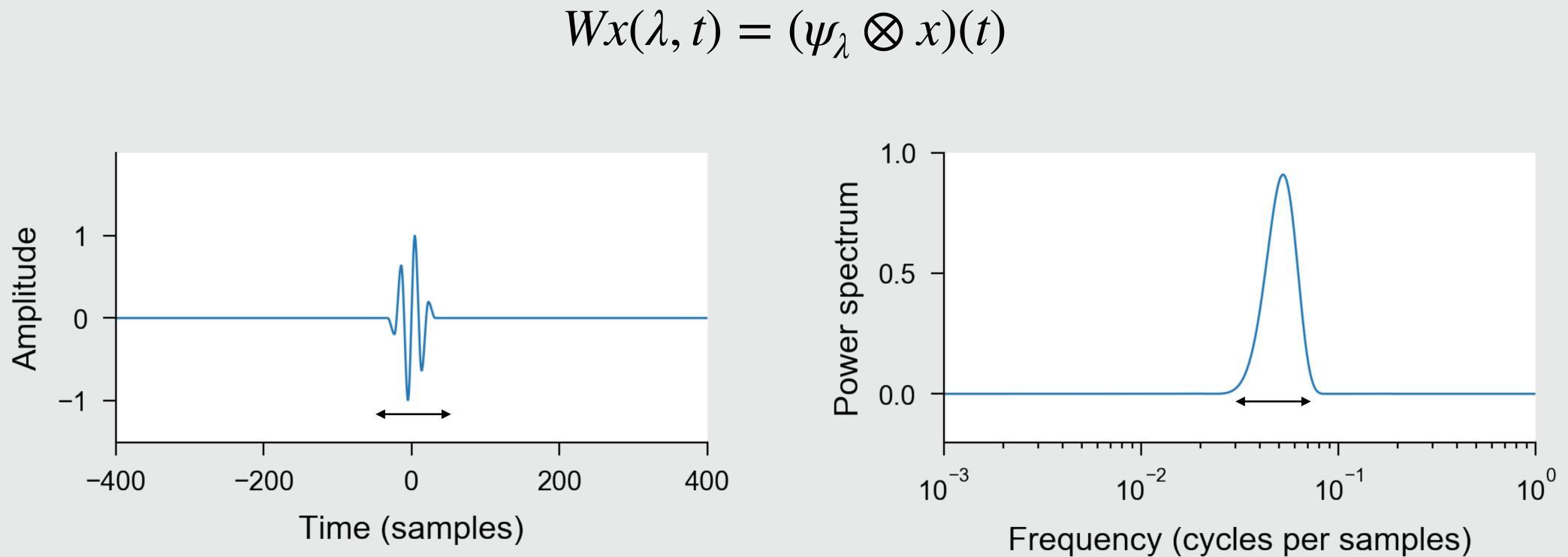


Neural networks can approximate highly **non-linear** functions



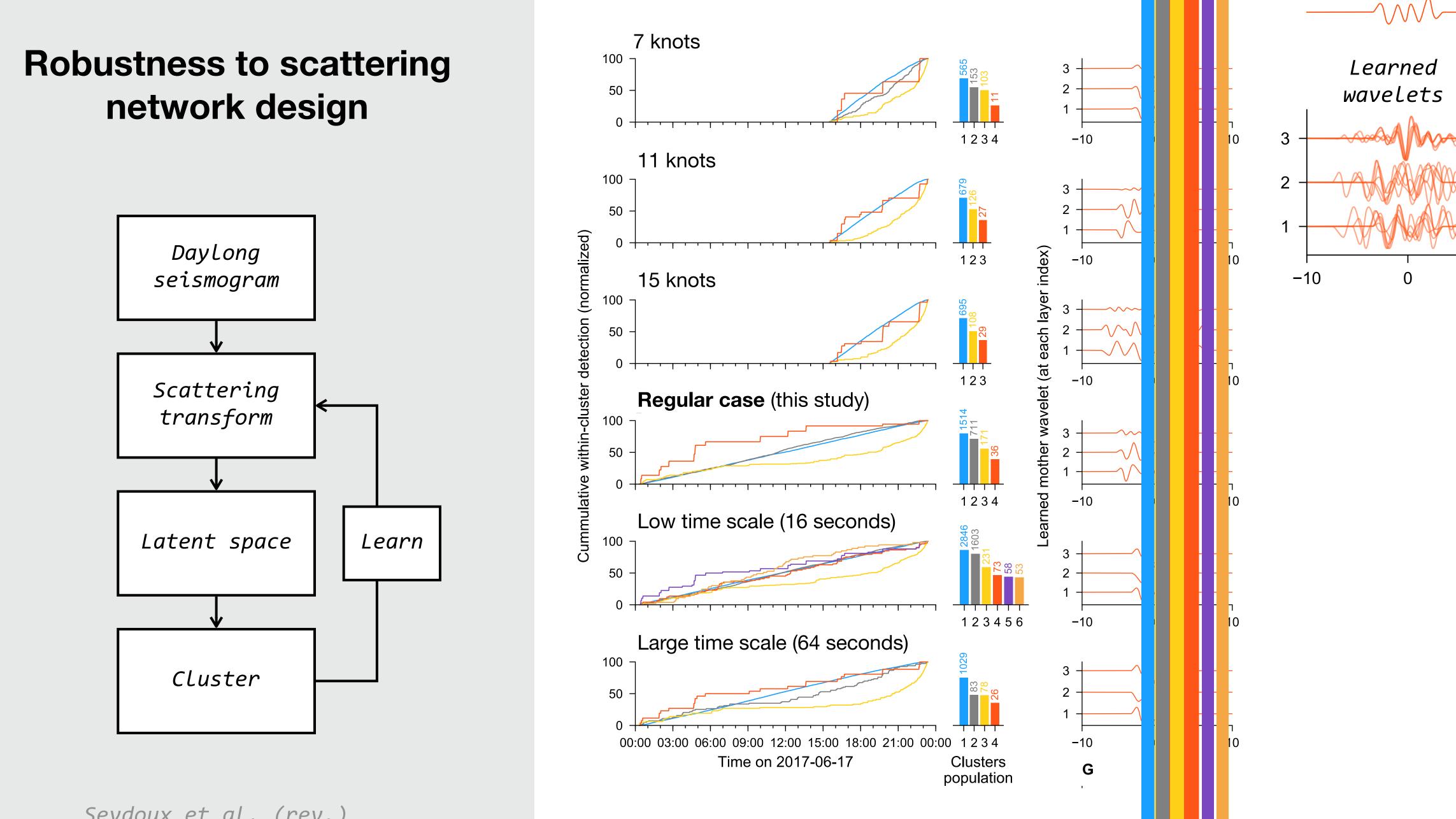


Wavelet transform



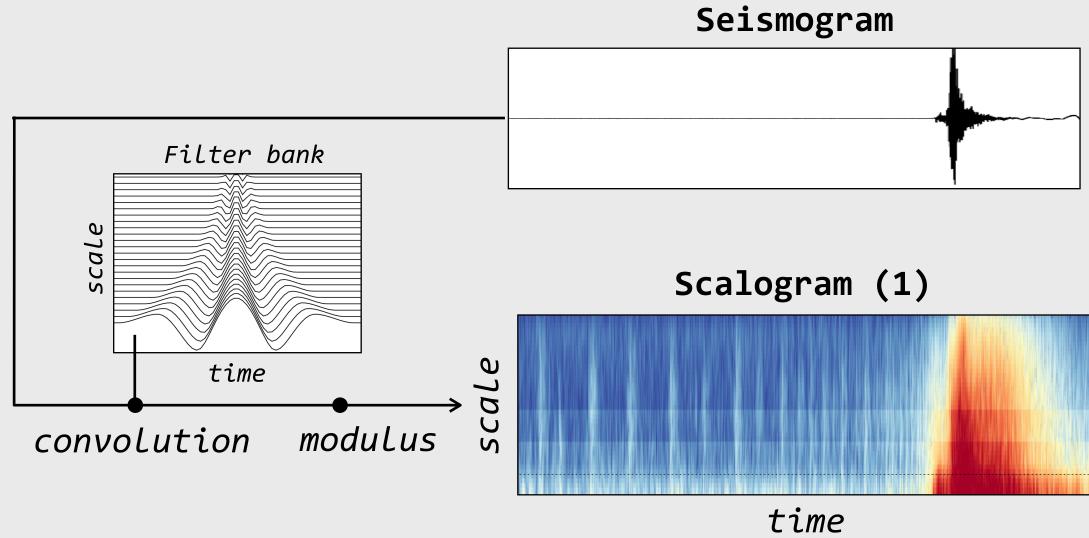
Explore the time and frequency content of a one-dimensional signal with convolution with different wavelets localized in time and frequency

Wavelets are localized in time and frequency



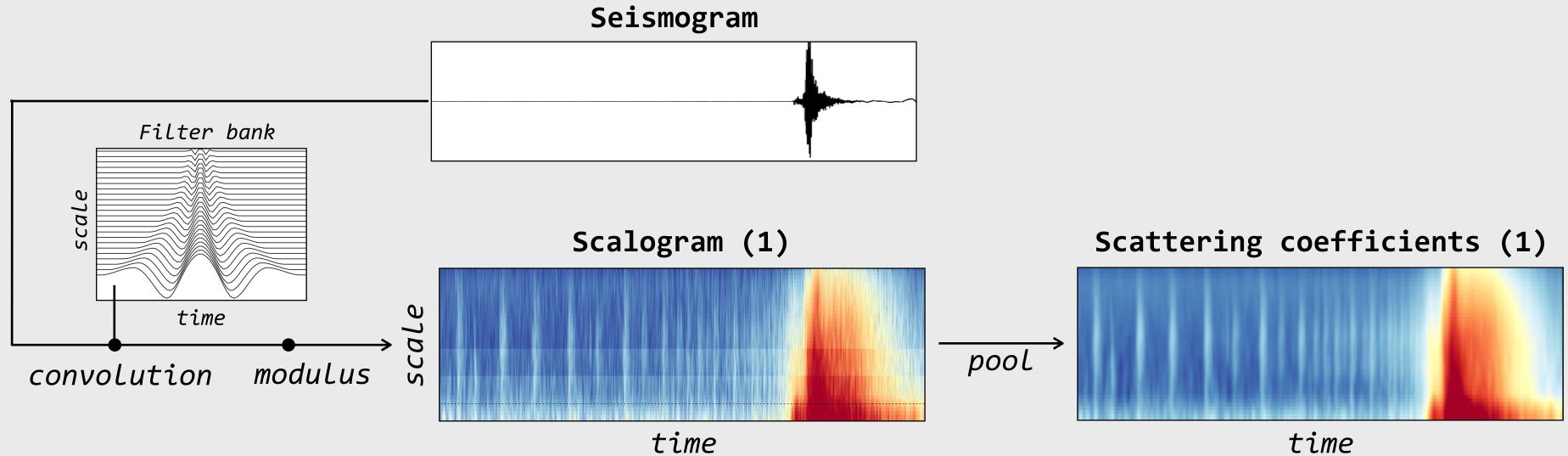
Different parameters always recover the precursory pattern

Idea of a scattering network



The first layer is a time-frequency representation of the waveform

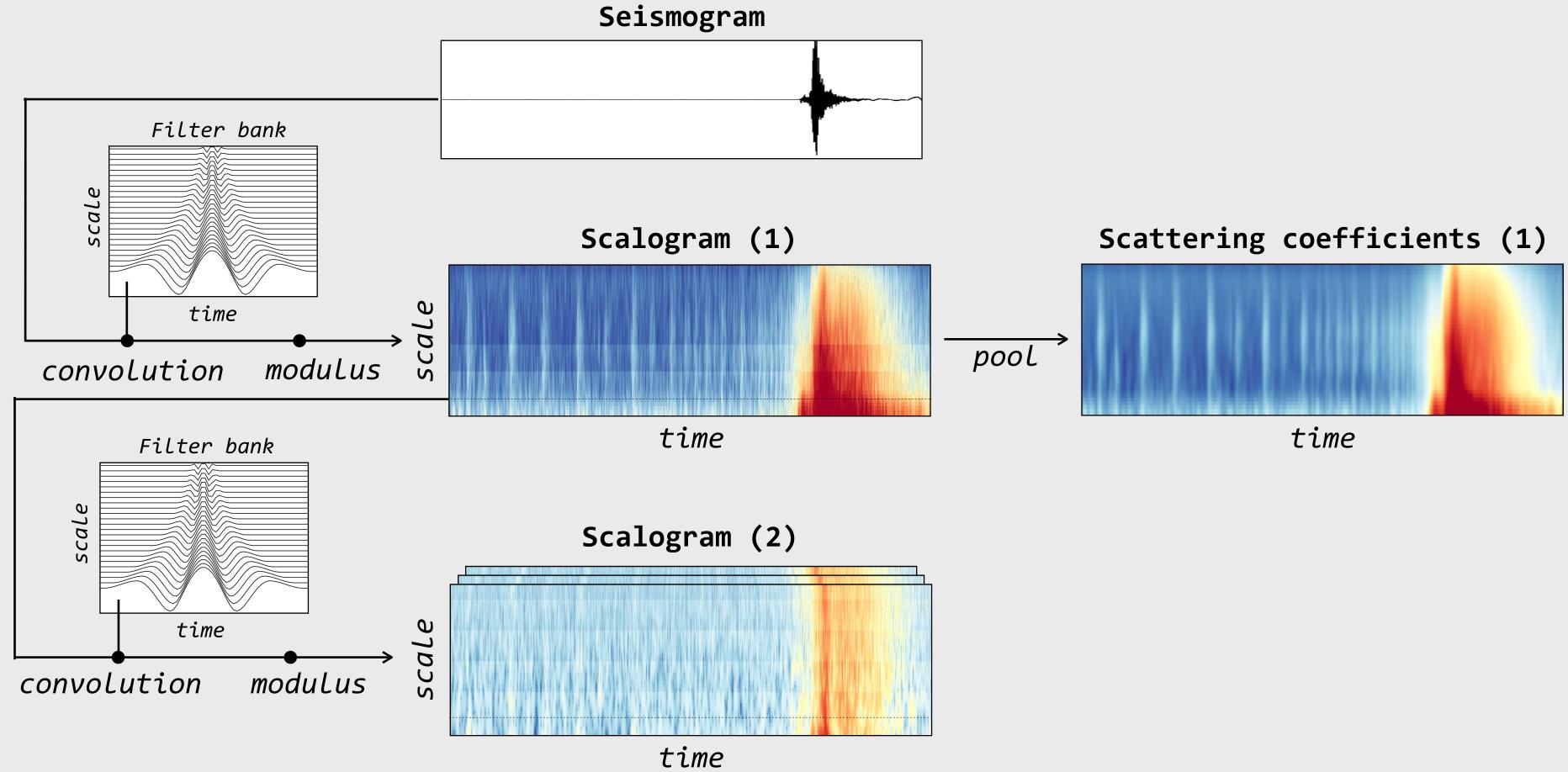
Idea of a scattering network



The first layer is a time-frequency representation of the waveform

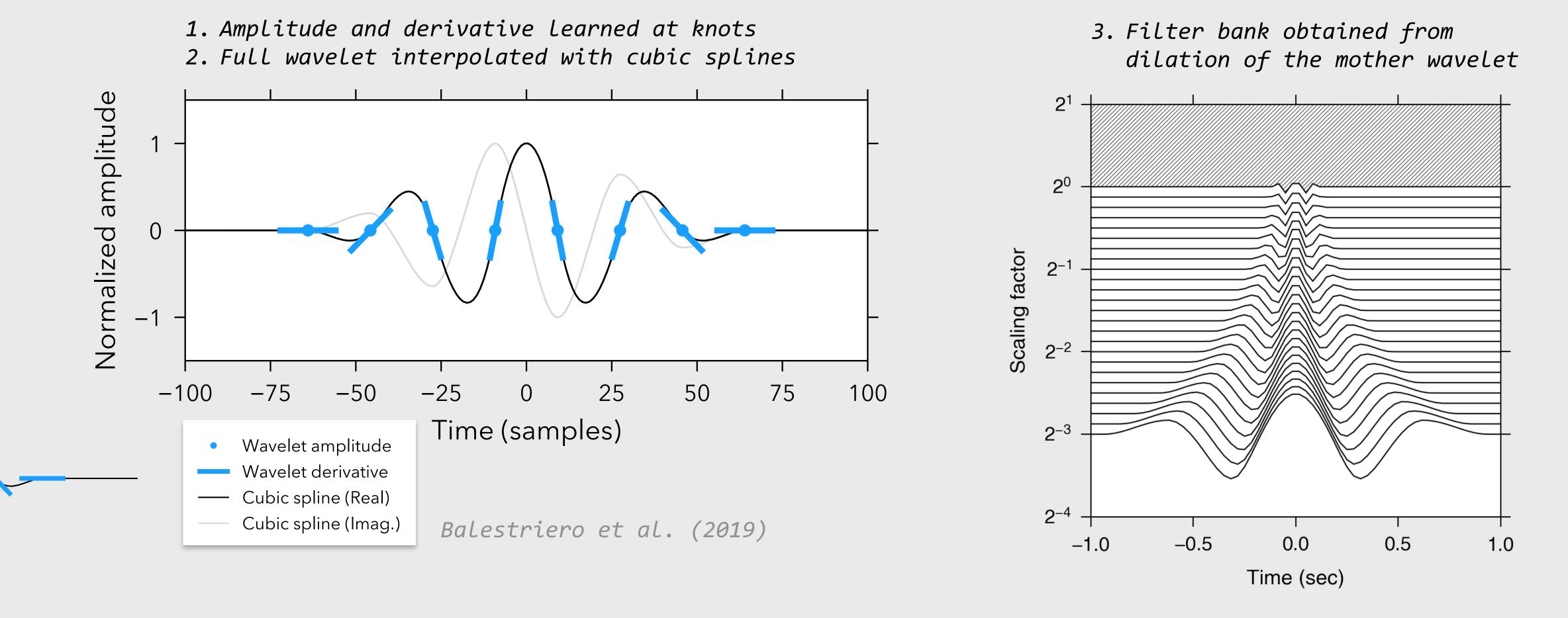
The first-order scattering coefficients provide a locally stable signal description at small time scales.

Idea of a scattering network



Larger time scales are analyzed at second order

Learnable wavelets from Hermite cubic spline interpolation



We can learn the wavelets given any task (e.g. clustering, classification, ...). Only a few coefficients are learned compared with classical convolutional nets